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Abstract—The objective of this study is to develop and empir- 
ically evaluate an educational model that enhances algorithmic 
thinking — a key element of computational literacy — through 
the application with the concept of so called semantic waves 
for advancing K-12 students’ digital proficiency. The concept 
of a semantic wave refers to the process of moving between 
abstract, theoretical knowledge and concrete, practical examples 
to create deeper understanding and learning. Considering this, 
our proposed model in the field of algorithmic thinking is intended 
to support pre-service computer science teachers and educators 
in designing instructional processes that are easy to implement 
and facilitate swift planning and reflection for K-12 computer 
science education. Initial results indicate promising outcomes but 
also suggested areas for enhancement. This research furthermore 
delves into refining the model through the incorporation of 
notional machines and the computational action approach for 
improving the training of future computer science teachers and 
students for the challenges of digital transformation. 

I. INTRODUCTION 

Digital competencies refer to the skills needed to use digital 

technology effectively and safely in areas like education, 

work, and social activities. These skills are very important 

for students in school, especially in today’s world where 

technology is constantly changing. They need to learn how to 

use technology in a smart and responsible way [1]. The skills 

involved in computational thinking and digital competencies 

overlap a lot [1]. Additionally, algorithmic thinking, which 

is a part of computational thinking [2], is key for helping 

these students understand digital competencies deeply. In the 

preparation of future computer science (CS) teachers, therefore 

it is also important to emphasize on teaching computational 

problem solving skills at school. Teachers should be able 

to integrate and apply these skills in their lesson-planning. 

Considering this, the concept of semantic waves [3] has been 

developed and tested in different subject areas to describe and 

reflect on planning instructional processes, but few, especially 

in unplugged settings such as [4] in a case study on so called 

crazy characters and [5] in two case studies (a Teleporting 

Robot and Box Variables), have been tested in computer 

science (CS) education. The study presented in this paper 

describes a teaching model that uses semantic waves to help 

improve students’ algorithmic thinking and digital skills. In 

doing this, we run a CS Teaching-Learning Lab, where pre- 

service CS teachers can practice lessons in workshops with K- 

12 students. This supports pre-service CS teachers in designing 

and testing teaching methods for K-12 CS education. An 

initial online review suggested promising signs [6], but it also 

indicated the need for further development of our model. This 

study enhances our model with further concepts like notional 

machines [7] (flowcharts) and computational action [8]. The 

overall goal is to provide a effective framework for the training 

of future teachers, as discussed by [9], and to address students’ 

competencies for a digital future. 

II. RELATED WORK 

A. Computational and Algorithmic Thinking 

Algorithmic thinking is part of computational thinking, 

which ultimately goes back to [10], as already noted by 

[2], who defined computational thinking as thinking like a 

computer scientist. In the following years, there have been 

many attempts to define the term, but they have not yet been 

brought together into one (e.g. [11]). In [1] many definitions 

are reviewed and finally they came up with eight compo- 

nent groups of computational thinking such as data analysis 

and representation, computational artifacts, decomposition, 

abstraction, algorithms, communication and collaboration, 

computing and society, and evaluation. Here in [1] also the 

high correspondence between computational thinking and the 

digital competences is emphasized. 

Building upon computational thinking as initially proposed 

by [2] and further developed in for problem-solving processes 

by [12], this study positions algorithmic thinking within the 

broader domain of computational thinking. The conceptualiza- 

tion of algorithmic thinking is structured into three methodical 

phases: 1) Problem Understanding, encompassing description, 

abstraction, and decomposition (UP); 2) Problem Solving, 

through the design of algorithms (SP); and 3) Solution 

Analysis, involving the testing of the solution’s effectiveness 

(analyze). Consequently, our research leverages a computa- 

tional thinking framework for problem-solving, as evidenced 

in applications ranging e.g. from everyday challenges [13] 

to Python programming [14]. This approach underpins our 

methodology for educating students in problem-solving tech- 

niques, with the goal of enhancing their algorithmic thinking 

capabilities. 

For teaching algorithmic thinking it is effective if students 

are personally engaged and activated by the problems they are 

asked to solve, especially if they are enabled to understand 
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and program and therefore manipulate digital phenomena that 

affect their daily lives, as required by digital competences 

[1]. According to [15], this is achieved by fostering learners’ 

computational identity as well as digital empowerment, with 

computational identity being defined as the recognition of 

a person’s ability to design and implement computational 

solutions to self-identified problems or opportunities. Digital 

empowerment is described as learners’ confidence that they 

can translate their computational identity into computational 

action - in contexts that truly impact their lives. Earlier 

research of [8] shows the importance of covering topics in 

the curriculum that have a real impact on students. The 

Dagstuhl Triangle [16] characterizes digital artifacts from 

three different perspectives (How does it work?, How is it 

used?, What is it’s impact?) can serve as idea do differentiate 

digital competences. In How does it work? competencies of 

algorithmic thinking are part of. A significant difference in 

students’ self-perception can be assumed, when the topics are 

provided from the students’ everyday digital world. That is 

why the concept of students workshops we design chosen as 

underlying idea to strengthen the digital empowerment and 

therefore the digital identity [8]. For instance, this is addressed 

by students developing an animation and a computer game on 

the one hand, and simulating a voice assistant on the other 

hand, which is part of the students’ everyday life. 

B. Semantic Waves 

The term semantic wave comes from Legitimation Code 

Theory, which is a practical framework used to analyze a 

variety of issues, practices, and contexts in education and 

beyond [3]. Derived from this, semantics in this sense are 

semantic gravity (SG) and semantic density (SD) according to 

[3]: 

• Semantic gravity (SG) refers to the degree to which 

meaning relates to its context. The stronger the semantic 

gravity (SG+), the more meaning is dependent on its 

context; the weaker the semantic gravity (SG-), the less 

dependent meaning is on its context. 

• Semantic density (SD) refers to the degree of condensa- 

tion of meaning within socio-cultural practices.(SD) The 

stronger the semantic density (SD+), the more meanings 

are condensed within practices; the weaker the semantic 

density (SD-), the less. 

With the help of these two terms, it is possible to model a 

semantic wave (see Fig. 1). 

For example, Fig. 1 shows the course of a semantic wave 

as indicated by [5] using crazy characters in an unplugged 

CS context. Time here is relative. At first, the content or 

topics to be learned are still introduced to the learner with 

low SG (abstract concept) and high SD (technical language), 

but then, for example, applied to a concrete example (SG+) 

with everyday language (SD-) and finally successively brought 

back to the original level. There is only a little work in the 

field of CS teaching that apply and investigate the concept 

of a semantic wave in unplugged settings, as in [4] a case 

study on so-called crazy characters investigates the concept 

 

 
 

Fig. 1. Traversing a semantic wave by [5]. 

 

 

of a semantic wave and also in [5] using two case studies 

(a Teleporting Robot activity and a Box Variable). There are 

some applications of semantic waves for teaching English or 

even biology and history [3]. In this context, the approach 

of [17], which used semantic waves for teacher training of 

future English teachers by measuring and analyzing it with 

a translator, is notable. In [18], from the perspective of 

semantic waves, a model for the promotion of English teaching 

in higher education has been constructed. This provides a 

valuable reference for curricular reform and design, and a 

scientific basis for developing English teaching in Chinese 

higher education. The results of [6] indicate that a plugged 

approach for CS education could foster the acquisition of 

algorithmic thinking. This leads to a research gap in applying 

semantic waves to practical computing education, suggesting 

a promising direction for future studies. 

C. Block-based programming language 

Since the release of Scratch in 2007, a huge amount of 

practice and research has been done with block-based pro- 

gramming languages. In [19] and also in [20] were articles 

analyzed on the relationship between Scratch and computa- 

tional thinking and both show that computational thinking can 

be taught with Scratch. Today, Scratch programmers can create 

stories, animations, games, music, and share their programs 

with the web. In his article Programming for everyone, [21] 

pointed out the main advantages of block-based languages for 

beginning programmers, since they do not present the syntax 

problems of text-based languages and, not to underestimate, 

students can set interesting programming tasks that go beyond 

prime calculations or similar. In [22] a broad overview of 

how Scratch has been used in different subjects to promote 

computational thinking is provided and conclude that these 

are promising approaches, but that quantitative data are still 

largely lacking at this time. From this we can conclude: 

Scratch is very well suited to teach computational thinking 

and therefore algorithmic thinking skills, but there is still a 

lack of quantitative data. 

D. Notional machines 

The idea of notional machines goes back to the 1970s. In 

[23] is a detailed overview of notional machines and it is 

defined a notional machine as a pedagogic device to assist the 

understanding of some aspect of programs or programming. In 
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[23] also examples of notional machines are examined and di- 

vided into the categories Machine-Generated Representations 

(e.g. Program visualization tools), which usually show the state 

of the execution at any given step, Handmade Representations 

(sketches, drawings - e.g. flowcharts, texts, actions) and finally 

Analogies (e.g. shoebox for a variable). 

In [7] are some pedagogical recommendations for the use 

of notional machines given. They state that by using them, 

students become more aware of how and why a program really 

works, thus better understand program execution as a whole. In 

[23] is also the use of notional machines as explanatory aids to 

account for the learner’s current level of knowledge described 

and to avoid unnecessary cognitive load. In particular, they 

increase semantic gravity and decrease semantic density (II-B) 

in the context of a semantic wave - thereby making a concept 

more understandable [23]. To the best of our knowledge, 

notional machines have not yet been used in the context of 

semantic waves in CS education. 

E. Enhanced SWAT model 

We synthesized the semantic wave framework [3] with the 

algorithmic thinking approach of [12] to design a model we 

named SWAT (Semantic Wave Algorithmic Thinking), a tool 

for educators to effectively plan and reflect on algorithmic 

thinking instruction within (CS) education. As it is illustrated 

in Figure 4, the model represents the Module flow, integrat- 

ing semantic wave and algorithmic thinking across various 

phases. Workshops for school students, where we implement 

this model focus on algorithmic problems using block-based 

programming for K-12 learners, promoting a student-centered 

educational setting. Previous investigations [6] examined the 

efficacy of an online workshop modeled on SWAT, targeting 

the Pledge algorithm within a 90-minute session (see Figure 

2). While the earlier study revealed no significant statistical 

improvement in K-12 students’ algorithmic thinking, qualita- 

tive insights were more positive. Further, students recognized 

semantic wave phases quantitatively, but qualitative feedback 

was inconsistent. Based on these findings, we retained the core 

pedagogical strategy for this study, combining semantic wave 

with algorithmic thinking and using block-based programming 

languages (Scratch), but extended the duration to four 90- 

minute Modules (see Figure 2). In order to promote the 

students’ competence in algorithmic thinking better than in the 

previous study, we refined the problem-solving steps: First, we 

included a notional machine concept [7] to promote a deeper 

understanding of problem solving and to encourage reflective 

thinking about program operations. Second, we situate all 

problems within the context of computational action [8] to 

strengthen students’ computational identity and thus their 

computational empowerment through relatable, real-world sce- 

narios. 

III. RESEARCH QUESTIONS 

Two research questions are addressed in this study: When 

students participate in a workshop designed after the so called 

SWAT model (Semantic Wave Algorithmic Thinking), 

 

 
 

Fig. 2. Developing Process of the SWAT model. 

 

 

• RQ1: To what degree do K-12 students’ competence in 

algorithmic thinking develop? 

• RQ2: How are the phases of the semantic wave perceived 

by the students? 

RQ1 examines students’ growth in algorithmic thinking skills, 

RQ2 tests whether our design using semantic waves is per- 

ceived as such. Operationalizing our research questions is done 

through a case study following a mixed methods approach 

[24] examining Hypothesis 1: The SWAT model promotes K- 

12 students’ algorithmic thinking. and Hypothesis 2: During 

each Module of the workshop, the phases of a semantic wave 

are perceived by the students. 

IV. METHODS 

A. Setting and Participants, Treatment fidelity 

In this study, N=39 K-12 students aged 12-13 years, par- 

ticipated in an on-site workshop at our University. Before the 

workshop, the students had only had two computer science 

lessons at school in which they had learned simple coding 

sequences in Scratch - they were particularly unfamiliar with 

flowcharts in the run-up to the workshop. The control group 

consisted of N=38 high school students aged 13-14. The con- 

trol group was one year older and had taken a small CS class 

the previous year learning algorithm structures (conditions, 

loops, sequences) in Scratch. Informed consent was obtained 

from the parents of the participating students in both the 

treatment and control groups. As it is shown in Figure 3 before 

and after the workshop, students in the treatment and students 

in a control group completed an algorithmic thinking test [25]. 

Since the prior knowledge of the control group was greater, 

the analysis (see section IV-C1) examined the learning gain 

rather than the absolute score achieved. 

We also documented the Treatment fidelity, which identifies 

if an intervention is delivered as intended which is an im- 

portant construct for educators when interpreting intervention 

research [26]. The study workshop is designed to address 

treatment fidelity categories of [27]: Each Module of the 

workshop records the steps students take using the worksheets 

and Scratch programs in phases 2-4 (adherence). All students 
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Fig. 3. Procedure of the workshop with algorithmic thinking pre- and posttest 
[25]. Each Module of the workshops is based on the SWAT model. 

 

 
Fig. 4. The progression of a Module that follows a semantic wave [3] and in 
the phases 2-4 algorithmic thinking steps [12] (SWAT model). The problem is 
divided into three sub-problems, with students working on each sub-problem 
using worksheets (see Figure 5) in phases 2-4 in each Module. 

 

 

complete the same tasks and have the same amount of time 

(quantity). Process is ensured by the whole workshop setting. 

During the workshop, students’ cognitive load is measured 

IV-C2. Quality is addressed by an additional item where 

students rate their personal effort. The results are shown in 

Fig. 9c), 9f), 9i) and 9l), where the rating is high in all four 

workshop Modules, with a decrease towards the end, so the 

overall quality is very well met. 

B. Materials 

The workshop consists of four 90-minute Modules, all based 

on the SWAT model and increasing in difficulty (see Fig. 3). 

In each Module the students are guided in the problem-solving 

process by three sub-problems (semantic wave phases 2-4, 

see Fig. 3 and 4). This implements the algorithmic thinking 

steps unplugged (worksheets text answers and flowcharts) and 

Fig. 5. Algorithmic thinking steps [12] presented on each worksheet for each 
sub-problem in all Modules and the qualitative data collected. For example: 
the worksheet for Module 1, phase 4. 

 

 

plugged (block-based language programs) (see Fig. 5). Each 

topic of the Modules is chosen to motivate students to explore 

the concepts behind everyday applications in terms of [1] 

and computational action [8] (Module 1: animation (loops), 

Module 2: game (conditions), Module 3: game (variables), 

Module 4: voice assistant (object communication), see Fig. 

3). 

Each Module is structured according to a semantic wave as 

follows (see Fig. 4): 

• Phase 1 and 1a (signaling and concept introduction 

phase): Here the teacher introduces the lesson problem 

and links it to a concrete problem in Scratch. This phase 

is designed to have a high semantic density (SD++) and 

low semantic gravity (SG–). For example, in Module 1: 

Programming a disco animation using loops. 

• Phases 2, 3 and 4: The lesson problem is divided into 

3 sub-problems. In each phase, using the three sub- 

problems, students here work individually through the 

steps of algorithmic thinking to solve the lesson problem 

(see example worksheet in Fig. 5). All sub-problems are 

shown in Figure 3. Tasks and contents are designed to 

correspond to the progression of semantic density and 

semantic gravity in terms of a semantic wave. 

• Phase 5: The students are brought back to the starting 

level in the semantic wave (SG–,SD+). Solutions are 

discussed as a group and students have time to work 

individually. 

C. Instruments and Analysis 

1) Instruments and Analysis for RQ1: To what degree do 

K-12 students’ competence in algorithmic thinking develop?: 

Quantitative data: Students in the treatment group (TG) and 

control groups (CG) completed an identical, reliable algo- 

rithmic thinking pre- and posttest (Cronbach’s α = 0.8 

good, [25]). Test items are translated, and distractors per 

task varied in order for posttest. The analysis examines the 

learning gain rather than the absolute score achieved, and is 
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both descriptive and inferential. The informative hypothesis 

was TGpretest = CGpretest = CGposttest < TGposttest 

(treatment group (TG) improved at posttest compared to 

pretest and control group (CG)), the null hypothesis was 

TGpretest = CGpretest = CGposttest = TGposttest (neither 

group of students improved). This was evaluated with ap- 

proximate adjusted fractional Bayes factors [28], using within 

repeated measures ANOVA as interpreted by [29]. As our 

sample size is N=39, we chose this statistical approach, which 

is robust to non-normally distributed data [30]. For effect sizes, 

we calculated the standardized Cohen’s d and interpreted it 

according to [31]. The calculation used estimates for A [32]. 

The quantitative data was collected using a digital test. The 

data was analysed and the results presented using R-Studio 

software. 

The qualitative data (full-filled worksheets and created 

Scratch programs, see Fig. 5) are analyzed through a qualita- 

tive content analysis according to [33], (interpretive paradigm 

to hypothesis 1 (III) and is differentiated in terms of algorith- 

mic thinking, divided into units of analysis (phases 2, 3 and 4 

of semantic wave). The worksheets are coded into understand 

problem (UP) and solve problem (SP) categories. Programs 

are differentiated based on both algorithmic thinking theory 

and individual categories of [34]. The developed category 

system uses the categories flow control (FC) and logic as 

they describe all used programming content. Characteristics 

weak, moderate and strong using for both developed category 

systems [35]. After coding, the team discussed and revised 

the data. A pre-service student was then trained to re-code the 

material. The Intercoder agreement in MAXQDA (segment 

overlap of 95%) was 88.30% (understand problem and solve 

problem) and 84.75% (flow control and logic). The follow- 

ing review included the addition of missing codes for the 

understand problem category and the importance of accurate 

and complete responses for strong coding. The solve problem 

category agreed that a flowchart that completely solves the 

problem but is not clearly drawn should be strongly coded. 

After revision, MAXQDA yielded an intercoder agreement of 

99.25% (understand problem and solve problem) and 99.80% 

(flow control and logic) with 95% segment overlap. The 

qualitative data was analysed using MAXQDA software. The 

results were presented using a spreadsheet program. 

2) Instruments and Analysis for RQ2: How are the phases 

of the semantic wave perceived by the students?: For the 

quantitative data the cognitive load theory (CL) is used to get 

a sense of how the phases of a semantic wave are perceived 

by students. 

The subjective cognitive load approach assumes that work- 

ing memory is limited and long-term memory nearly infinite 

[36]. These basic assumptions about human cognitive archi- 

tecture have implications for successful teaching and learning. 

The intrinsic cognitive load (ICL) is the load that results 

from the inherent complexity of the learning task, and the 

extraneous cognitive load ECL is the load that results from 

the instructional design of the learning content [37], [38]. 

Based on our workshop design (see IV-B), it suggests that high 

semantic density (SD) (technical language formulations) and 

low semantic gravity (SG) (abstract concepts) require higher 

ICL than low SD (everyday language) and high SG (real- 

world examples). The survey developed by [39] is particularly 

suitable for learning environments that use digital interactive 

learning media [40]. Thus, since Scratch is an interactive 

learning environment, this questionnaire (paper pencil) is used 

to collect data (Cronbach’s α = 0.81 (good) for ICL and 0.86 

(good) for ECL [39]). Figure 4 shows the cognitive load rating 

times for each Module five times. 

In the test of [39], two items ask about ICL and three items 

ask about ECL, each on a 7-point Likert scale, where a 1 

means ICL/ECL is low and a 7 means ICL/ECL is high. 

The adopted informative hypothesis for ICL was ICL1 > 

ICL2 < ICL3 < ICL4 < ICL5 (students’ ratings of 

their ICL correspond to a wave-like arrangement), the null 

hypothesis was ICL1 = ICL2 = ICL3 = ICL4 = ICL5 

(no differences in students’ ICL ratings) with ICL1 the ICL 

measurement at time 1 (Means of both ICL items in the 

survey) and correspondingly ICL2 to ICL5. 

In addition, students assessed their personal ECL. The tasks 

and worksheet design are such that ECL should decrease over 

the course of the Modules IV-B. Thus, the adopted infor- 

mative hypothesis ECL was: ECL1 > ECL2 > ECL3 > 

ECL4 > ECL5, where ECL1 means ECL measurement 

at time 1 (means of three ECL questionnaire items) and 

correspondingly ECL2 to ECL5. The point-zero hypothesis 

was: ECL1 = ECL2 = ECL3 = ECL4 = ECL5 (ECL 

remains the same). The quantitative data for ICL and ECL 

in each Module was analyzed with the approximate adjusted 

fractional Bayes factors [28], using within repeated measures 

ANOVA as interpreted by [29]. We chose this statistical 

approach, which is robust to non-normally distributed data 

[30]. For effect sizes, we calculated the standardized Cohen’s 

d and interpreted it according to [31]. The calculation used 

estimates for A [32]. The quantitative data were analysed and 

the results illustrated using R-Studio software. 

For the qualitative data, (textual responses on the worksheets 

in the algorithmic thinking step understand problem (UP)), a 

summary qualitative content analysis following the [33] inter- 

pretive paradigm is used. The analysis focuses on hypothesis 

2 (III). The question is structured according to the theory of a 

semantic wave, the units analyzed for each Module are phases 

2-4 of the semantic wave. A category system is developed 

[35], the material is coded with weak, medium, and strong 

characteristics. In terms of a semantic wave, the students’ 

responses in the developed category system should be weak 

in phase 2 (SD–, SG++), medium in phase 3 (SD-, SG+), and 

strong in phase 4 (SD+, SG-). The team discussed and revised 

the coded material, then trained a pre-service student to code 

according to the category system. The intercoder agreement in 

MAXQDA was 90.10% (segment overlap 95%). The coding 

was then revised by adding text passages forgotten by both 

coders and harmonizing synonyms in the category system. In 

order to pay more attention to the use of technical terms, the 

category system was revised. After the revision, the intercoder 
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Fig. 6. Results of the algorithmic thinking pre- and posttests [25] with Mean 
and Standard Deviation. 

 

agreement in MAXQDA is 99.34% (95% segment overlap). 

The qualitative data was analysed and the results illustrated 

using MAXQDA software. 

V. RESULTS 

A. Results for RQ1: To what degree do K-12 students’ com- 

petence in algorithmic thinking develop? 

The quantitative data evaluation (algorithmic thinking pre- 

and posttest) revealed a slight decrease in Mean, Median 

and Standard Deviation for the control group (CG) (see Fig. 

6, Meanpretest = 12.0, Meanposttest = 10.7, Standard 

Deviationpretest = 3.5, Standard Deviationposttest = 3.0, 

Medianpretest = 11, Medianposttest = 10). 

In contrast, the treatment group (TG) displayed stable Standard 

Deviation and marginal increases in Mean and Median (see 
Fig. 6, Meanpretest = 11.1, Meanposttest = 11.8, Standard 

Deviationpretest = 2.92, Standard Deviationposttest = 2.67, 

Medianpretest = 11, Medianposttest = 12). 

The effect sizes showed a weak effect for an improvement in 

the treatment group (TG) and a weak effect for worsening in 

the control group (CG) between pre- and posttest (d = −0.3 

for TG, d = 0.4 for CG, [31]). 

Inferential statistics showed no significant findings for the 

informative hypothesis (1.4 add that and more times more 

likely, [29]). 

The results of the qualitative content analysis using the devel- 

oped category system are shown in Figures 7 and 8 and Table I. 

Figure 7 shows that the textual responses on the worksheets in 

the understand problem category were predominantly weakly 

categorized, with the exception of Module 2. 

The solve problem category, where students had to create 

flowcharts (notional machines), shows a more differentiated 

picture. In Module 1 and Module 4, the proportion of moder- 

ately and strongly categorized flowcharts increases compared 

to weakly categorized flowcharts. However, the proportion of 

flowcharts strongly classified in the solve problem category is 

predominantly greater than the percentage of text answers in 

the understand problem category, especially in Modules 2 and 

4. The only exceptions are Module 2, Phase 4 and Module 3, 

Phase 2. 

 

 
 

 

 
 

 

 
 

 

 

 
Fig. 7. Cumulative relative frequencies of the algorithmic thinking categories 
understand problem (UP) and solve problem (SP) in the characteristics weak, 
medium and strong, phases 2-4 in Modules 1-4. 

 

 

 

The absolute responses (see Table I) in Module 3, but also in 

Module 2, Phase 4, are low in both categories, but especially 

in the solve problem category. 

The programming solutions (see Fig. 8 and Tab.I) in Module 1 

start predominantly with the strong category in phase 2 (flow 

control (FC) 96% and logic 89.7%), but then deteriorate in 

phases 3 and 4. 

In Module 2 and 3, the solutions are also predominantly in the 

strong category in phases 2 and 3 (2: logic and flow control 

90% and more; 3: logic and flow control between 75% and 

90%), in Module 3 the category increases in phase 3 (see Fig. 

8 and Tab.I). 

In Module 4, the strongly coded portions of the logic and flow 

control decrease only slightly over the course of phases 2 to 

4 (see Fig. 8 and Tab.I). 

In each Module the third sub-problem (phase 4) was worked 

on less (absolute numbers see Tab. I) and solved worse (see 

Fig. 8) - especially visible in Module 3. 

In summary, it can be said that the students improved in 

algorithmic thinking, especially in problem solving, logic and 

flow control in Module 1, as well as in Module 2 in phases 

2 and 3. In the logic and flow control categories, students 

maintained their high performance in Module 3, but dropped 

slightly in Module 4, although they improved here in problem 

solving. 
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Fig. 8. Cumulative relative frequencies of the algorithmic thinking categories 
logic and flow control in the characteristics weak, medium and strong, phases 
2-4 in Modules 1-4. 

 

 

B. Results for RQ2: How are the phases of the semantic wave 

perceived by the students? 

The evaluated quantitative data show a wave-like illustrative 

progression of ICL measurements for all four Modules (Fig. 

9). Analyzing the students’ ratings yields statistically relatively 

strong significance for the informative hypothesis in each 

Module (Module 1:1.3 · 1034; Module 2: 1.9 · 1078; Module 

3:3.4 · 10110; Module 4: 6.6 · 1047 add that and more times 
more likely, [29]). 

The effect size values (standardized Cohan’s d) underscore this 

result of the ICL ratings, as there are strong differences [31] 

between the mean values in each Module from time 1 to time 

2 (Module 1: d = 2.4; Module 2: d > 4; Module 3: d = 2.7; 

Module 4: d = 2.8) and 3 (Module 1: d = 1.6; Module 2: 

d = 2.3; Module 3: d = 2.6; Module 4: d = 1.7), and from 

time 2 to 3 (Module 1: d = −1.7; Module 2: d = −3.7; 

Module 3: d = −1.9; Module 4: d = −1.7) and 4 (Module 1: 

d = −2.4; Module 2: d < −4; Module 3: d = −2.6; Module 

4: d = −2.6). The decrease in ICL measurement at time point 

5 (Fig. 9), is also reflected in the effect size values, as between 

the mean values of time points 4 and 5, the effect sizes are 

each positive and moderate to strong (Module 1: d = 0.7; 

Module 2: d = 1.3; Module 3: d = 0.8; Module 4: d = 0.9). 

For all four Modules of the workshop, Fig. 9 shows a 

decreasing course of ECL measurements in phases 1-4 and 

a smaller or larger increase in phase 5, depending on the 

TABLE I 
ABSOLUTE AND RELATIVE FREQUENCIES OF THE CODE CATEGORIES 

OCCURRING WITH REGARD TO RQ1 IN THE QUALITATIVE DATA OF 

PHASES 2-4 (MODULE X.1-3). 
 

 

 

 

Module. This upward trend is smaller in Modules 2 and 3, 

as the significance for the hypothesis could be shown here, 

but there is weak evidence for hypothesis 1 and no evidence 

for hypothesis 4. (Module 2: 287642.4; Module 3: 131183716; 

Module 1: 35.62; Module 4: 0.21; add that and more times 
more likely, [29]). 

The effect size values (standardized Cohan’s d) illustrate this, 

as between the mean values of time points 1, 2, 3 and 4 

at the respective time points 2, 3 and 4 are positive and 

predominantly moderate to strong, also the increase in the ECL 

measurement at time 5 (Fig. 9), is also reflected in the effect 

size values (mean values time 4 and 5 negative, moderate to 

strong) [31]. 

The qualitative data analysis for RQ2, using a content 

analysis system, revealed varied student responses across 

Modules. Figure 10 shows a document comparison chart of 

the categorized text responses on the worksheets between 

sub-problems 1-3 (phases 2-4 of the semantic wave) in each 

Module (Modules 1-4) and individual students (numbers 1-39). 

In Module 2, responses improved from weak in phase 2 to 

medium in phase 3, matching the semantic wave phases, but 

no further increase was seen in phase 4 with some responses 

missing. 

Conversely, Modules 1, 3, and 4 did not align clearly with 

semantic wave phases. Module 1 showed a decline from 

medium/strong to medium/weak responses. Module 3 had 

predominantly weak responses, and Module 4, especially in 

phase 4, had few strong responses. 

VI. DISCUSSION 

In this study, we presented a model for designing computer 

science lessons at school promoting algorithmic thinking. We 

integrated and refined it with the concept of the semantic 

Codes Module 1.1 Module 1.2 Module 1.3 Module 2.1 Module 2.2 Module 2.3 

UP strong 0 (0.0%) 0 (0.0%) 0 (0.0%) 7 (22.6%) 10 (32.3%) 2 (11.1%) 

UP medium 23 (62.2%) 11 (39.3%) 9 (52.9%) 11 (35.5%) 15 (48.4%) 13 (72.2%) 

UP weak 14 (37.8%) 17 (60.7%) 8 (47.1%) 13 (41.9%) 6 (19.4%) 3 (16.7%) 

Sum UP 37 (100.0%) 28 100.0% 17 (100.0%) 31 (100.0 %) 31 (100.0%) 18 (100.0%) 

SP strong 7 (18.4%) 0 (0.0%) 2 (11.1%) 18 (58.1%) 13 (41.9%) 0 (0.0%) 

SP medium 8 (21.1%) 15 (48.4%) 10 (55.6%) 8 (25.8%) 10 (32.3%) 2 (28.6%) 

SP weak 23 (60.5%) 16 (51.6%) 6 (33.3%) 5 (16.1%) 8 (25.8%) 5 (71.4%) 

Sum SP 38 (100.0 %) 31 (100.0%) 18 (100.0%) 31 (100.0 %) 31 (100.0%) 7 (100.0%) 

Logic strong 26 (89.7%) 14 (53.8%) 7 (29.2%) 17 (89.5%) 16 (88.9%) 9 (60.0%) 

Logic medium 2 (6.9%) 10 (38.5%) 12 (50.0%) 2 (10.5%) 2 (11.1%) 4 (26.7%) 

Logic weak 1 (3.4%) 2 (7.7%) 5 (20.8%) 0 (0.0%) 0 (0.0%) 2 (13.3%) 

Sum Logic 29 (100.0 %) 26 (100.0%) 24 (100.0%) 19 (100.0 %) 18 (100.0%) 15 (100.0%) 

FC strong 28 (96.6%) 13 (50.0%) 12 (50.0%) 18 (94.7%) 17 (94.4%) 10 (66.7%) 

FC medium 0 (0.0%) 10 (38.5%) 7 (29.2%) 1 (5.3%) 1 (5.6%) 4 (26.7%) 

FC weak 1 (3.4%) 3 (11.5%) 5 (20.8%) 0 (0.0%) 0 (0.0%) 1 (6.7%) 

Sum FC 29 (100.0 %) 26 (100.0%) 24 (100.0%) 19 (100.0%) 18 (100.0%) 18 (100.0%) 

Codes Module 3.1 Module 3.2 Module 3.3 Module 4.1 Module 4.2 Module 4.2 

UP strong 1 (3.7%) 0 (0.0%) 0 (0.0%) 1 (3.1%) 2 (7.7%) 0 (0.0%) 

UP medium 11 (40.7%) 10 (37.0%) 6 (35.3%) 12 (37.5%) 6 (23.1%) 4 (30.8%) 

UP weak 15 (55.6%) 17 (63.0%) 11 (64.7%) 19 (59.4%) 16 (69.2%) 9 (69.2%) 

Sum UP 27 (100.0%) 27 (100.0%) 17 (100.0%) 32 (100.0%) 26 (100.0%) 13 (100.0%) 

SP strong 0 (0.0%) 0 (0.0%) 0 (0.0%) 9 (26.5%) 10 (50.0% 2 (33.3%) 

SP medium 1 (25.0%) 3 (75.0%) 1 (50.0%) 15 (44.1%) 5 (25.0%) 3 (50.0%) 

SP weak 3 (75.0%) 1 (25.0%) 1 (50.0%) 10 (29.4%) 5 (25.0%) 1 (16.7%) 

Sum SP 4 (100.0%) 4 (100.0%) 2 (100.0%) 34 (100.0%) 20 (100.0%) 6 (100.0%) 

Logic strong 14 (70.0%) 15 (88.2%) 6 (54.5%) 16 (80.0%) 14 (70.0%) 8 (44.4%) 

Logic medium 5 (25.0%) 2 (11.8%) 5 (45.5%) 4 (20.0%) 5 25.0% 7 (38.9%) 

Logic weak 1 (5.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (5.0%) 3 (16.7%) 

Sum Logic 20 (100.0%) 17 (100.0%) 11 (100.0%) 20 (100.0%) 20 (100.0%) 18 (100.0%) 

FC strong 17 (85.0%) 15 (88.2%) 7 (63.6%) 16 (80.0%) 14 (70.0%) 9 (50.0%) 

FC medium 3 (15.0%) 2 (11.8%) 4 (36.4%) 4 (20.0%) 6 (30.0%) 7 (38.9%) 

FC weak 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (11.1%) 

Sum FC 20 (100.0%) 17 (100.0%) 11 (100.0%) 20 (100.0%) 20 (100.0%) 18 (100.0%) 
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wave. The context of the study is a plugged CS educational 

environment using a block-based programming language. To 

the best of our knowledge, there is little research only in 

unplugged settings in the area of semantic wave in the design 

and reflection of instructions in CS education in the case 

studies of [4] and [5]. Our proposed model in the area of 

algorithmic thinking is also intended to support pre-service 

computer science teachers in designing instructional processes 
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(l) CP Module 4 

that are easy to implement and facilitate rapid planning and 

reflection for K-12 computer science (CS) education. This 

study also deals with the refinement of the model through 

a longer duration (4 Modules 90 min each instead of 1 

Module), of the incorporation of notional machines and the 

computational action approach to improve the training of 

future CS teachers and students for the challenges of digital 

transformation (see Fig. 2). 

The analysis of the qualitative data for RQ1 (To what 

degree do K-12 students’ competence in algorithmic thinking 

develop?) shows that the students solved the Modules 1, 2 and 

4 in the categories solve problem, using notional machines 

predominantly in the characteristics medium and strong com- 

pared to the text response tasks (category understand prob- 

lem). In the categories flow control and logic (programming 

solutions), the student solutions (Scratch programs) were even 

predominantly strongly and moderately mapped in all four 

Modules. Since the difficulty of the Modules in the workshop 

increases, this suggests that the students’ algorithmic thinking 

competence has been promoted, while no significant statistical 

increase in algorithmic thinking is observed for RQ1. These 

results of the quantitative analysis could be due to a number of 

reasons, such as the number of participants, as the sample size 

of N=39 is not too large, and e.g. in [41] an improvement in 

problem solving was shown with a Scratch intervention with 

113 participants and a duration of one month. The duration 

of the intervention could also be a reason, as in [42] an 

improvement in problem solving was shown with a Scratch 

Fig. 9. Intrinsic Cognitive Load (ICL), Extraneous Cognitive Load (ECL) 
and Compliance (CP) with Mean and Standard Deviation. 

 

 
Fig. 10. Occurrence of the semantic wave categories in the characteristics 
weak (color light grey), medium (color dark grey) and strong (color black), 
phases 2-4 per student. 

intervention with only 28 participants but a duration of 2 

semesters. Of course, both the number of participants and the 

duration could be the reason for the non-significant statistical 

results, as in [43] an improvement in problem solving was 

shown with a Scratch intervention of 139 participants and a 

duration of 1 semester. Certainly, it also remains to be investi- 

gated whether a statistically significant increase in algorithmic 

thinking occurs when the difficulty of the task or the context, 

such as physical computing [44], is varied. Finally, it should 

be mentioned that the treatment and control group is not fully 

randomized. All this should be taken into account in a follow- 

up study. 

In RQ2 (How are the phases of the semantic wave perceived 

by the students?), analysis of the quantitative data from all 

four workshop Modules revealed a wave-like course of ICL 

measurements similar to the course of a semantic wave and 

a declining trend in ECL measurements across all Modules. 

This suggests that the phases of the semantic wave of the 

workshop were appropriately perceived by the students and 

that the design of the workshop was basically in line with 
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the planning of a semantic wave. Since according to [38] 

the ICL depends on two different factors, the interactivity of 

the element and the learner’s prior knowledge, this should of 

course be investigated in a subsequent study with different par- 

ticipants or intervention settings, e.g. using a constructionism 

versus a semantic wave approach [45]. Following the work of 

[46] and [47], who investigated both the relationship between 

cognitive load and learning programming with block-based 

programming languages or simulation games, the relationship 

between cognitive load and a semantic wave could also be 

investigated in more detail. Qualitatively, no semantic wave 

was detectable in the textual responses of the students. The 

first aim of this study was to explore and test the SWAT model 

as a whole, so the next interesting step would be to examine 

the individual phases of the semantic wave more in detail. This 

could be done, for example, using think-aloud approaches or 

interviews to examine the semantic wave flow more closely, 

as described in [5] for unplugged settings. In this context, 

the relationship between notional machines (flowcharts) and 

semantic waves could be further investigated. The use of 

flowcharts (notional machines) in the problem-solving phase 

(category solve problem) was new in this second study of 

the SWAT model. The flowcharts almost consistently provided 

better categorical results in terms of algorithmic thinking than 

the text responses in the understand problem step. This could 

be an indication of a notional machine effect mentioned in 

[23], that the use of a notional machine increases semantic 

gravity and decreases semantic density (see Figure 1 and 

section II-D) and thus makes a concept or here a problem 

more understandable. This should be explored in more detail, 

perhaps by comparing exclusively textual responses in the 

problem-solving step with exclusively flowcharts in this step, 

and provides a great opportunity for further research into the 

relationship between a semantic wave and the use of notional 

machines. 

The study workshop is also designed to address treatment 

fidelity categories of [27] (see sec. IV). Quality is addressed 

by an additional item where students rate their personal effort 

(see Fig. 9c), 9f), 9i) and 9l)). The rating is high in all four 

workshop Modules, with a decrease towards the end, so the 

overall quality is very well met although the level of difficulty 

of the workshop increased from Module to Module and also 

within a Module along the semantic wave. This is perhaps 

an indication that the requirement for computational action, 

which was incorporated into the design of this workshop, 

could have a positive effect on compliance. However, this 

would need to be investigated further - for example, through 

qualitative interviews that examine precisely this question. 

The qualitative results for RQ1 showed that in all Modules 

algorithmic thinking competence decreases in phase 4 (see 

Fig. 7 and 8, Tab.I), while both students’ compliance and 

ICL scores were high (Fig.9). The results of the qualitative 

analysis in terms of semantic density and semantic gravity 

were also mostly weak characterised in this phase (Fig.10). 

This suggests that semantic density may have been higher 

and semantic gravity lower than predicted in phase 4 in all 

Modules, especially in Module 3, since the analyzed data show 

weaker results here than in the other Modules. 

VII. CONCLUSIONS 

Overall, it is important to note that the focus of this study is 

on the experience of using a semantic wave in CS education 

to promote algorithmic thinking. The results show, on the one 

hand, that the K-12 students seem to have experienced the 

phases of the semantic wave accordingly and, on the other 

hand, that in all Modules the phases 4 in terms of the semantic 

wave have more semantic density (technical jargon) and less 

semantic gravity (complexity of the task) than originally 

intended. In addition, the qualitative data show a promotion 

of algorithmic thinking - both in the use of notional machine 

and in block-based programming. However, the statistical 

results were limited due to sample size and study design. 

In conclusion, the strategy of combining semantic wave with 

algorithmic thinking steps in a model with the integration of 

notional machines and computational action-oriented content 

is a promising approach that provides a strategy for prospective 

CS teachers to accurately plan instructional steps and reflect 

on them after the fact, as is done in the discussion here, 

but should be pursued further. The present study therefore 

opens up exciting new directions for research in K-12 CS 

education, e.g., the connections between semantic wave and 

notional machine in more detail or to further enhance the 

competence of algorithmic thinking by integrating productive 

failure approaches into the model. 

Future research on the SWAT model should therefore per- 

haps investigate shortening the semantic wave phases by one, 

e.g. phase 4, to give students more time for problem solving 

and thus for algorithmic thinking. The comparison with the 

misconceptions studied by [48] could also be helpful in the 

design of the SWAT model - this needs to be investigated. To 

increase the competence of algorithmic thinking, the produc- 

tive failure approach of [49] could also be a possible extension 

of the model to further enhance algorithmic thinking and thus 

digital competences. Next steps will focus on revising the 

SWAT model to better promote students’ algorithmic thinking 

competences by intensifying the problem-solving process. 
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