
Semantic Waves: A Strategy for Algorithmic Skills

in K-12 Computer Science Education

Frauke Ritter

Department for Computer Science and Digital Education

Karlsruhe University of Education, Germany

Email: frauke.ritter@ph-karlsruhe.de

Bernhard Standl

Department for Computer Science and Digital Education

Karlsruhe University of Education, Germany

Email: standl@ph-karlsruhe.de

Abstract—The objective of this study is to develop and empir-
ically evaluate an educational model that enhances algorithmic
thinking — a key element of computational literacy — through
the application with the concept of so called semantic waves
for advancing K-12 students’ digital proficiency. The concept
of a semantic wave refers to the process of moving between
abstract, theoretical knowledge and concrete, practical examples
to create deeper understanding and learning. Considering this,
our proposed model in the field of algorithmic thinking is intended
to support pre-service computer science teachers and educators
in designing instructional processes that are easy to implement
and facilitate swift planning and reflection for K-12 computer
science education. Initial results indicate promising outcomes but
also suggested areas for enhancement. This research furthermore
delves into refining the model through the incorporation of
notional machines and the computational action approach for
improving the training of future computer science teachers and
students for the challenges of digital transformation.

I. INTRODUCTION

Digital competencies refer to the skills needed to use digital

technology effectively and safely in areas like education,

work, and social activities. These skills are very important

for students in school, especially in today’s world where

technology is constantly changing. They need to learn how to

use technology in a smart and responsible way [1]. The skills

involved in computational thinking and digital competencies

overlap a lot [1]. Additionally, algorithmic thinking, which

is a part of computational thinking [2], is key for helping

these students understand digital competencies deeply. In the

preparation of future computer science (CS) teachers, therefore

it is also important to emphasize on teaching computational

problem solving skills at school. Teachers should be able

to integrate and apply these skills in their lesson-planning.

Considering this, the concept of semantic waves [3] has been

developed and tested in different subject areas to describe and

reflect on planning instructional processes, but few, especially

in unplugged settings such as [4] in a case study on so called

crazy characters and [5] in two case studies (a Teleporting

Robot and Box Variables), have been tested in computer

science (CS) education. The study presented in this paper

describes a teaching model that uses semantic waves to help

improve students’ algorithmic thinking and digital skills. In

doing this, we run a CS Teaching-Learning Lab, where pre-

service CS teachers can practice lessons in workshops with K-

12 students. This supports pre-service CS teachers in designing

and testing teaching methods for K-12 CS education. An

initial online review suggested promising signs [6], but it also

indicated the need for further development of our model. This

study enhances our model with further concepts like notional

machines [7] (flowcharts) and computational action [8]. The

overall goal is to provide a effective framework for the training

of future teachers, as discussed by [9], and to address students’

competencies for a digital future.

II. RELATED WORK

A. Computational and Algorithmic Thinking

Algorithmic thinking is part of computational thinking,

which ultimately goes back to [10], as already noted by

[2], who defined computational thinking as thinking like a

computer scientist. In the following years, there have been

many attempts to define the term, but they have not yet been

brought together into one (e.g. [11]). In [1] many definitions

are reviewed and finally they came up with eight compo-

nent groups of computational thinking such as data analysis

and representation, computational artifacts, decomposition,

abstraction, algorithms, communication and collaboration,

computing and society, and evaluation. Here in [1] also the

high correspondence between computational thinking and the

digital competences is emphasized.

Building upon computational thinking as initially proposed

by [2] and further developed in for problem-solving processes

by [12], this study positions algorithmic thinking within the

broader domain of computational thinking. The conceptualiza-

tion of algorithmic thinking is structured into three methodical

phases: 1) Problem Understanding, encompassing description,

abstraction, and decomposition (UP); 2) Problem Solving,

through the design of algorithms (SP); and 3) Solution

Analysis, involving the testing of the solution’s effectiveness

(analyze). Consequently, our research leverages a computa-

tional thinking framework for problem-solving, as evidenced

in applications ranging e.g. from everyday challenges [13]

to Python programming [14]. This approach underpins our

methodology for educating students in problem-solving tech-

niques, with the goal of enhancing their algorithmic thinking

capabilities.

For teaching algorithmic thinking it is effective if students

are personally engaged and activated by the problems they are

asked to solve, especially if they are enabled to understand

20
24

 IE
EE

 G
lo

ba
l E

ng
in

ee
rin

g
Ed

uc
at

io
n

Co
nf

er
en

ce
 (E

DU
CO

N
) |

 9
79

-8
-3

50
3-

94
02

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
ED

U
CO

N
60

31
2.

20
24

.1
05

78
89

9

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

and program and therefore manipulate digital phenomena that

affect their daily lives, as required by digital competences

[1]. According to [15], this is achieved by fostering learners’

computational identity as well as digital empowerment, with

computational identity being defined as the recognition of

a person’s ability to design and implement computational

solutions to self-identified problems or opportunities. Digital

empowerment is described as learners’ confidence that they

can translate their computational identity into computational

action - in contexts that truly impact their lives. Earlier

research of [8] shows the importance of covering topics in

the curriculum that have a real impact on students. The

Dagstuhl Triangle [16] characterizes digital artifacts from

three different perspectives (How does it work?, How is it

used?, What is it’s impact?) can serve as idea do differentiate

digital competences. In How does it work? competencies of

algorithmic thinking are part of. A significant difference in

students’ self-perception can be assumed, when the topics are

provided from the students’ everyday digital world. That is

why the concept of students workshops we design chosen as

underlying idea to strengthen the digital empowerment and

therefore the digital identity [8]. For instance, this is addressed

by students developing an animation and a computer game on

the one hand, and simulating a voice assistant on the other

hand, which is part of the students’ everyday life.

B. Semantic Waves

The term semantic wave comes from Legitimation Code

Theory, which is a practical framework used to analyze a

variety of issues, practices, and contexts in education and

beyond [3]. Derived from this, semantics in this sense are

semantic gravity (SG) and semantic density (SD) according to

[3]:

• Semantic gravity (SG) refers to the degree to which

meaning relates to its context. The stronger the semantic

gravity (SG+), the more meaning is dependent on its

context; the weaker the semantic gravity (SG-), the less

dependent meaning is on its context.

• Semantic density (SD) refers to the degree of condensa-

tion of meaning within socio-cultural practices.(SD) The

stronger the semantic density (SD+), the more meanings

are condensed within practices; the weaker the semantic

density (SD-), the less.

With the help of these two terms, it is possible to model a

semantic wave (see Fig. 1).

For example, Fig. 1 shows the course of a semantic wave

as indicated by [5] using crazy characters in an unplugged

CS context. Time here is relative. At first, the content or

topics to be learned are still introduced to the learner with

low SG (abstract concept) and high SD (technical language),

but then, for example, applied to a concrete example (SG+)

with everyday language (SD-) and finally successively brought

back to the original level. There is only a little work in the

field of CS teaching that apply and investigate the concept

of a semantic wave in unplugged settings, as in [4] a case

study on so-called crazy characters investigates the concept

Fig. 1. Traversing a semantic wave by [5].

of a semantic wave and also in [5] using two case studies

(a Teleporting Robot activity and a Box Variable). There are

some applications of semantic waves for teaching English or

even biology and history [3]. In this context, the approach

of [17], which used semantic waves for teacher training of

future English teachers by measuring and analyzing it with

a translator, is notable. In [18], from the perspective of

semantic waves, a model for the promotion of English teaching

in higher education has been constructed. This provides a

valuable reference for curricular reform and design, and a

scientific basis for developing English teaching in Chinese

higher education. The results of [6] indicate that a plugged

approach for CS education could foster the acquisition of

algorithmic thinking. This leads to a research gap in applying

semantic waves to practical computing education, suggesting

a promising direction for future studies.

C. Block-based programming language

Since the release of Scratch in 2007, a huge amount of

practice and research has been done with block-based pro-

gramming languages. In [19] and also in [20] were articles

analyzed on the relationship between Scratch and computa-

tional thinking and both show that computational thinking can

be taught with Scratch. Today, Scratch programmers can create

stories, animations, games, music, and share their programs

with the web. In his article Programming for everyone, [21]

pointed out the main advantages of block-based languages for

beginning programmers, since they do not present the syntax

problems of text-based languages and, not to underestimate,

students can set interesting programming tasks that go beyond

prime calculations or similar. In [22] a broad overview of

how Scratch has been used in different subjects to promote

computational thinking is provided and conclude that these

are promising approaches, but that quantitative data are still

largely lacking at this time. From this we can conclude:

Scratch is very well suited to teach computational thinking

and therefore algorithmic thinking skills, but there is still a

lack of quantitative data.

D. Notional machines

The idea of notional machines goes back to the 1970s. In

[23] is a detailed overview of notional machines and it is

defined a notional machine as a pedagogic device to assist the

understanding of some aspect of programs or programming. In

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

[23] also examples of notional machines are examined and di-

vided into the categories Machine-Generated Representations

(e.g. Program visualization tools), which usually show the state

of the execution at any given step, Handmade Representations

(sketches, drawings - e.g. flowcharts, texts, actions) and finally

Analogies (e.g. shoebox for a variable).

In [7] are some pedagogical recommendations for the use

of notional machines given. They state that by using them,

students become more aware of how and why a program really

works, thus better understand program execution as a whole. In

[23] is also the use of notional machines as explanatory aids to

account for the learner’s current level of knowledge described

and to avoid unnecessary cognitive load. In particular, they

increase semantic gravity and decrease semantic density (II-B)

in the context of a semantic wave - thereby making a concept

more understandable [23]. To the best of our knowledge,

notional machines have not yet been used in the context of

semantic waves in CS education.

E. Enhanced SWAT model

We synthesized the semantic wave framework [3] with the

algorithmic thinking approach of [12] to design a model we

named SWAT (Semantic Wave Algorithmic Thinking), a tool

for educators to effectively plan and reflect on algorithmic

thinking instruction within (CS) education. As it is illustrated

in Figure 4, the model represents the Module flow, integrat-

ing semantic wave and algorithmic thinking across various

phases. Workshops for school students, where we implement

this model focus on algorithmic problems using block-based

programming for K-12 learners, promoting a student-centered

educational setting. Previous investigations [6] examined the

efficacy of an online workshop modeled on SWAT, targeting

the Pledge algorithm within a 90-minute session (see Figure

2). While the earlier study revealed no significant statistical

improvement in K-12 students’ algorithmic thinking, qualita-

tive insights were more positive. Further, students recognized

semantic wave phases quantitatively, but qualitative feedback

was inconsistent. Based on these findings, we retained the core

pedagogical strategy for this study, combining semantic wave

with algorithmic thinking and using block-based programming

languages (Scratch), but extended the duration to four 90-

minute Modules (see Figure 2). In order to promote the

students’ competence in algorithmic thinking better than in the

previous study, we refined the problem-solving steps: First, we

included a notional machine concept [7] to promote a deeper

understanding of problem solving and to encourage reflective

thinking about program operations. Second, we situate all

problems within the context of computational action [8] to

strengthen students’ computational identity and thus their

computational empowerment through relatable, real-world sce-

narios.

III. RESEARCH QUESTIONS

Two research questions are addressed in this study: When

students participate in a workshop designed after the so called

SWAT model (Semantic Wave Algorithmic Thinking),

Fig. 2. Developing Process of the SWAT model.

• RQ1: To what degree do K-12 students’ competence in

algorithmic thinking develop?

• RQ2: How are the phases of the semantic wave perceived

by the students?

RQ1 examines students’ growth in algorithmic thinking skills,

RQ2 tests whether our design using semantic waves is per-

ceived as such. Operationalizing our research questions is done

through a case study following a mixed methods approach

[24] examining Hypothesis 1: The SWAT model promotes K-

12 students’ algorithmic thinking. and Hypothesis 2: During

each Module of the workshop, the phases of a semantic wave

are perceived by the students.

IV. METHODS

A. Setting and Participants, Treatment fidelity

In this study, N=39 K-12 students aged 12-13 years, par-

ticipated in an on-site workshop at our University. Before the

workshop, the students had only had two computer science

lessons at school in which they had learned simple coding

sequences in Scratch - they were particularly unfamiliar with

flowcharts in the run-up to the workshop. The control group

consisted of N=38 high school students aged 13-14. The con-

trol group was one year older and had taken a small CS class

the previous year learning algorithm structures (conditions,

loops, sequences) in Scratch. Informed consent was obtained

from the parents of the participating students in both the

treatment and control groups. As it is shown in Figure 3 before

and after the workshop, students in the treatment and students

in a control group completed an algorithmic thinking test [25].

Since the prior knowledge of the control group was greater,

the analysis (see section IV-C1) examined the learning gain

rather than the absolute score achieved.

We also documented the Treatment fidelity, which identifies

if an intervention is delivered as intended which is an im-

portant construct for educators when interpreting intervention

research [26]. The study workshop is designed to address

treatment fidelity categories of [27]: Each Module of the

workshop records the steps students take using the worksheets

and Scratch programs in phases 2-4 (adherence). All students

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Procedure of the workshop with algorithmic thinking pre- and posttest
[25]. Each Module of the workshops is based on the SWAT model.

Fig. 4. The progression of a Module that follows a semantic wave [3] and in
the phases 2-4 algorithmic thinking steps [12] (SWAT model). The problem is
divided into three sub-problems, with students working on each sub-problem
using worksheets (see Figure 5) in phases 2-4 in each Module.

complete the same tasks and have the same amount of time

(quantity). Process is ensured by the whole workshop setting.

During the workshop, students’ cognitive load is measured

IV-C2. Quality is addressed by an additional item where

students rate their personal effort. The results are shown in

Fig. 9c), 9f), 9i) and 9l), where the rating is high in all four

workshop Modules, with a decrease towards the end, so the

overall quality is very well met.

B. Materials

The workshop consists of four 90-minute Modules, all based

on the SWAT model and increasing in difficulty (see Fig. 3).

In each Module the students are guided in the problem-solving

process by three sub-problems (semantic wave phases 2-4,

see Fig. 3 and 4). This implements the algorithmic thinking

steps unplugged (worksheets text answers and flowcharts) and

Fig. 5. Algorithmic thinking steps [12] presented on each worksheet for each
sub-problem in all Modules and the qualitative data collected. For example:
the worksheet for Module 1, phase 4.

plugged (block-based language programs) (see Fig. 5). Each

topic of the Modules is chosen to motivate students to explore

the concepts behind everyday applications in terms of [1]

and computational action [8] (Module 1: animation (loops),

Module 2: game (conditions), Module 3: game (variables),

Module 4: voice assistant (object communication), see Fig.

3).

Each Module is structured according to a semantic wave as

follows (see Fig. 4):

• Phase 1 and 1a (signaling and concept introduction

phase): Here the teacher introduces the lesson problem

and links it to a concrete problem in Scratch. This phase

is designed to have a high semantic density (SD++) and

low semantic gravity (SG–). For example, in Module 1:

Programming a disco animation using loops.

• Phases 2, 3 and 4: The lesson problem is divided into

3 sub-problems. In each phase, using the three sub-

problems, students here work individually through the

steps of algorithmic thinking to solve the lesson problem

(see example worksheet in Fig. 5). All sub-problems are

shown in Figure 3. Tasks and contents are designed to

correspond to the progression of semantic density and

semantic gravity in terms of a semantic wave.

• Phase 5: The students are brought back to the starting

level in the semantic wave (SG–,SD+). Solutions are

discussed as a group and students have time to work

individually.

C. Instruments and Analysis

1) Instruments and Analysis for RQ1: To what degree do

K-12 students’ competence in algorithmic thinking develop?:

Quantitative data: Students in the treatment group (TG) and

control groups (CG) completed an identical, reliable algo-

rithmic thinking pre- and posttest (Cronbach’s α = 0.8

good, [25]). Test items are translated, and distractors per

task varied in order for posttest. The analysis examines the

learning gain rather than the absolute score achieved, and is

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

both descriptive and inferential. The informative hypothesis

was TGpretest = CGpretest = CGposttest < TGposttest

(treatment group (TG) improved at posttest compared to

pretest and control group (CG)), the null hypothesis was

TGpretest = CGpretest = CGposttest = TGposttest (neither

group of students improved). This was evaluated with ap-

proximate adjusted fractional Bayes factors [28], using within

repeated measures ANOVA as interpreted by [29]. As our

sample size is N=39, we chose this statistical approach, which

is robust to non-normally distributed data [30]. For effect sizes,

we calculated the standardized Cohen’s d and interpreted it

according to [31]. The calculation used estimates for A [32].

The quantitative data was collected using a digital test. The

data was analysed and the results presented using R-Studio

software.

The qualitative data (full-filled worksheets and created

Scratch programs, see Fig. 5) are analyzed through a qualita-

tive content analysis according to [33], (interpretive paradigm

to hypothesis 1 (III) and is differentiated in terms of algorith-

mic thinking, divided into units of analysis (phases 2, 3 and 4

of semantic wave). The worksheets are coded into understand

problem (UP) and solve problem (SP) categories. Programs

are differentiated based on both algorithmic thinking theory

and individual categories of [34]. The developed category

system uses the categories flow control (FC) and logic as

they describe all used programming content. Characteristics

weak, moderate and strong using for both developed category

systems [35]. After coding, the team discussed and revised

the data. A pre-service student was then trained to re-code the

material. The Intercoder agreement in MAXQDA (segment

overlap of 95%) was 88.30% (understand problem and solve

problem) and 84.75% (flow control and logic). The follow-

ing review included the addition of missing codes for the

understand problem category and the importance of accurate

and complete responses for strong coding. The solve problem

category agreed that a flowchart that completely solves the

problem but is not clearly drawn should be strongly coded.

After revision, MAXQDA yielded an intercoder agreement of

99.25% (understand problem and solve problem) and 99.80%

(flow control and logic) with 95% segment overlap. The

qualitative data was analysed using MAXQDA software. The

results were presented using a spreadsheet program.

2) Instruments and Analysis for RQ2: How are the phases

of the semantic wave perceived by the students?: For the

quantitative data the cognitive load theory (CL) is used to get

a sense of how the phases of a semantic wave are perceived

by students.

The subjective cognitive load approach assumes that work-

ing memory is limited and long-term memory nearly infinite

[36]. These basic assumptions about human cognitive archi-

tecture have implications for successful teaching and learning.

The intrinsic cognitive load (ICL) is the load that results

from the inherent complexity of the learning task, and the

extraneous cognitive load ECL is the load that results from

the instructional design of the learning content [37], [38].

Based on our workshop design (see IV-B), it suggests that high

semantic density (SD) (technical language formulations) and

low semantic gravity (SG) (abstract concepts) require higher

ICL than low SD (everyday language) and high SG (real-

world examples). The survey developed by [39] is particularly

suitable for learning environments that use digital interactive

learning media [40]. Thus, since Scratch is an interactive

learning environment, this questionnaire (paper pencil) is used

to collect data (Cronbach’s α = 0.81 (good) for ICL and 0.86

(good) for ECL [39]). Figure 4 shows the cognitive load rating

times for each Module five times.

In the test of [39], two items ask about ICL and three items

ask about ECL, each on a 7-point Likert scale, where a 1

means ICL/ECL is low and a 7 means ICL/ECL is high.

The adopted informative hypothesis for ICL was ICL1 >

ICL2 < ICL3 < ICL4 < ICL5 (students’ ratings of

their ICL correspond to a wave-like arrangement), the null

hypothesis was ICL1 = ICL2 = ICL3 = ICL4 = ICL5

(no differences in students’ ICL ratings) with ICL1 the ICL

measurement at time 1 (Means of both ICL items in the

survey) and correspondingly ICL2 to ICL5.

In addition, students assessed their personal ECL. The tasks

and worksheet design are such that ECL should decrease over

the course of the Modules IV-B. Thus, the adopted infor-

mative hypothesis ECL was: ECL1 > ECL2 > ECL3 >

ECL4 > ECL5, where ECL1 means ECL measurement

at time 1 (means of three ECL questionnaire items) and

correspondingly ECL2 to ECL5. The point-zero hypothesis

was: ECL1 = ECL2 = ECL3 = ECL4 = ECL5 (ECL

remains the same). The quantitative data for ICL and ECL

in each Module was analyzed with the approximate adjusted

fractional Bayes factors [28], using within repeated measures

ANOVA as interpreted by [29]. We chose this statistical

approach, which is robust to non-normally distributed data

[30]. For effect sizes, we calculated the standardized Cohen’s

d and interpreted it according to [31]. The calculation used

estimates for A [32]. The quantitative data were analysed and

the results illustrated using R-Studio software.

For the qualitative data, (textual responses on the worksheets

in the algorithmic thinking step understand problem (UP)), a

summary qualitative content analysis following the [33] inter-

pretive paradigm is used. The analysis focuses on hypothesis

2 (III). The question is structured according to the theory of a

semantic wave, the units analyzed for each Module are phases

2-4 of the semantic wave. A category system is developed

[35], the material is coded with weak, medium, and strong

characteristics. In terms of a semantic wave, the students’

responses in the developed category system should be weak

in phase 2 (SD–, SG++), medium in phase 3 (SD-, SG+), and

strong in phase 4 (SD+, SG-). The team discussed and revised

the coded material, then trained a pre-service student to code

according to the category system. The intercoder agreement in

MAXQDA was 90.10% (segment overlap 95%). The coding

was then revised by adding text passages forgotten by both

coders and harmonizing synonyms in the category system. In

order to pay more attention to the use of technical terms, the

category system was revised. After the revision, the intercoder

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

20

15

10

5

1 pretest 2 posttest

time

(a) Treatment group

15

10

1 pretest 2 posttest

time

(b) Control group

Fig. 6. Results of the algorithmic thinking pre- and posttests [25] with Mean
and Standard Deviation.

agreement in MAXQDA is 99.34% (95% segment overlap).

The qualitative data was analysed and the results illustrated

using MAXQDA software.

V. RESULTS

A. Results for RQ1: To what degree do K-12 students’ com-

petence in algorithmic thinking develop?

The quantitative data evaluation (algorithmic thinking pre-

and posttest) revealed a slight decrease in Mean, Median

and Standard Deviation for the control group (CG) (see Fig.

6, Meanpretest = 12.0, Meanposttest = 10.7, Standard

Deviationpretest = 3.5, Standard Deviationposttest = 3.0,

Medianpretest = 11, Medianposttest = 10).

In contrast, the treatment group (TG) displayed stable Standard

Deviation and marginal increases in Mean and Median (see
Fig. 6, Meanpretest = 11.1, Meanposttest = 11.8, Standard

Deviationpretest = 2.92, Standard Deviationposttest = 2.67,

Medianpretest = 11, Medianposttest = 12).

The effect sizes showed a weak effect for an improvement in

the treatment group (TG) and a weak effect for worsening in

the control group (CG) between pre- and posttest (d = −0.3

for TG, d = 0.4 for CG, [31]).

Inferential statistics showed no significant findings for the

informative hypothesis (1.4 add that and more times more

likely, [29]).

The results of the qualitative content analysis using the devel-

oped category system are shown in Figures 7 and 8 and Table I.

Figure 7 shows that the textual responses on the worksheets in

the understand problem category were predominantly weakly

categorized, with the exception of Module 2.

The solve problem category, where students had to create

flowcharts (notional machines), shows a more differentiated

picture. In Module 1 and Module 4, the proportion of moder-

ately and strongly categorized flowcharts increases compared

to weakly categorized flowcharts. However, the proportion of

flowcharts strongly classified in the solve problem category is

predominantly greater than the percentage of text answers in

the understand problem category, especially in Modules 2 and

4. The only exceptions are Module 2, Phase 4 and Module 3,

Phase 2.

Fig. 7. Cumulative relative frequencies of the algorithmic thinking categories
understand problem (UP) and solve problem (SP) in the characteristics weak,
medium and strong, phases 2-4 in Modules 1-4.

The absolute responses (see Table I) in Module 3, but also in

Module 2, Phase 4, are low in both categories, but especially

in the solve problem category.

The programming solutions (see Fig. 8 and Tab.I) in Module 1

start predominantly with the strong category in phase 2 (flow

control (FC) 96% and logic 89.7%), but then deteriorate in

phases 3 and 4.

In Module 2 and 3, the solutions are also predominantly in the

strong category in phases 2 and 3 (2: logic and flow control

90% and more; 3: logic and flow control between 75% and

90%), in Module 3 the category increases in phase 3 (see Fig.

8 and Tab.I).

In Module 4, the strongly coded portions of the logic and flow

control decrease only slightly over the course of phases 2 to

4 (see Fig. 8 and Tab.I).

In each Module the third sub-problem (phase 4) was worked

on less (absolute numbers see Tab. I) and solved worse (see

Fig. 8) - especially visible in Module 3.

In summary, it can be said that the students improved in

algorithmic thinking, especially in problem solving, logic and

flow control in Module 1, as well as in Module 2 in phases

2 and 3. In the logic and flow control categories, students

maintained their high performance in Module 3, but dropped

slightly in Module 4, although they improved here in problem

solving.

n
u

m
b

e
r

o
f

c
o

rr
e

c
t

a
n
s
w

e
rs

n
u
m

b
e
r

o
f

c
o
rr

e
c
t

a
n
s
w

e
rs

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Cumulative relative frequencies of the algorithmic thinking categories
logic and flow control in the characteristics weak, medium and strong, phases
2-4 in Modules 1-4.

B. Results for RQ2: How are the phases of the semantic wave

perceived by the students?

The evaluated quantitative data show a wave-like illustrative

progression of ICL measurements for all four Modules (Fig.

9). Analyzing the students’ ratings yields statistically relatively

strong significance for the informative hypothesis in each

Module (Module 1:1.3 · 1034; Module 2: 1.9 · 1078; Module

3:3.4 · 10110; Module 4: 6.6 · 1047 add that and more times
more likely, [29]).

The effect size values (standardized Cohan’s d) underscore this

result of the ICL ratings, as there are strong differences [31]

between the mean values in each Module from time 1 to time

2 (Module 1: d = 2.4; Module 2: d > 4; Module 3: d = 2.7;

Module 4: d = 2.8) and 3 (Module 1: d = 1.6; Module 2:

d = 2.3; Module 3: d = 2.6; Module 4: d = 1.7), and from

time 2 to 3 (Module 1: d = −1.7; Module 2: d = −3.7;

Module 3: d = −1.9; Module 4: d = −1.7) and 4 (Module 1:

d = −2.4; Module 2: d < −4; Module 3: d = −2.6; Module

4: d = −2.6). The decrease in ICL measurement at time point

5 (Fig. 9), is also reflected in the effect size values, as between

the mean values of time points 4 and 5, the effect sizes are

each positive and moderate to strong (Module 1: d = 0.7;

Module 2: d = 1.3; Module 3: d = 0.8; Module 4: d = 0.9).

For all four Modules of the workshop, Fig. 9 shows a

decreasing course of ECL measurements in phases 1-4 and

a smaller or larger increase in phase 5, depending on the

TABLE I
ABSOLUTE AND RELATIVE FREQUENCIES OF THE CODE CATEGORIES

OCCURRING WITH REGARD TO RQ1 IN THE QUALITATIVE DATA OF

PHASES 2-4 (MODULE X.1-3).

Module. This upward trend is smaller in Modules 2 and 3,

as the significance for the hypothesis could be shown here,

but there is weak evidence for hypothesis 1 and no evidence

for hypothesis 4. (Module 2: 287642.4; Module 3: 131183716;

Module 1: 35.62; Module 4: 0.21; add that and more times
more likely, [29]).

The effect size values (standardized Cohan’s d) illustrate this,

as between the mean values of time points 1, 2, 3 and 4

at the respective time points 2, 3 and 4 are positive and

predominantly moderate to strong, also the increase in the ECL

measurement at time 5 (Fig. 9), is also reflected in the effect

size values (mean values time 4 and 5 negative, moderate to

strong) [31].

The qualitative data analysis for RQ2, using a content

analysis system, revealed varied student responses across

Modules. Figure 10 shows a document comparison chart of

the categorized text responses on the worksheets between

sub-problems 1-3 (phases 2-4 of the semantic wave) in each

Module (Modules 1-4) and individual students (numbers 1-39).

In Module 2, responses improved from weak in phase 2 to

medium in phase 3, matching the semantic wave phases, but

no further increase was seen in phase 4 with some responses

missing.

Conversely, Modules 1, 3, and 4 did not align clearly with

semantic wave phases. Module 1 showed a decline from

medium/strong to medium/weak responses. Module 3 had

predominantly weak responses, and Module 4, especially in

phase 4, had few strong responses.

VI. DISCUSSION

In this study, we presented a model for designing computer

science lessons at school promoting algorithmic thinking. We

integrated and refined it with the concept of the semantic

Codes Module 1.1 Module 1.2 Module 1.3 Module 2.1 Module 2.2 Module 2.3

UP strong 0 (0.0%) 0 (0.0%) 0 (0.0%) 7 (22.6%) 10 (32.3%) 2 (11.1%)

UP medium 23 (62.2%) 11 (39.3%) 9 (52.9%) 11 (35.5%) 15 (48.4%) 13 (72.2%)

UP weak 14 (37.8%) 17 (60.7%) 8 (47.1%) 13 (41.9%) 6 (19.4%) 3 (16.7%)

Sum UP 37 (100.0%) 28 100.0% 17 (100.0%) 31 (100.0 %) 31 (100.0%) 18 (100.0%)

SP strong 7 (18.4%) 0 (0.0%) 2 (11.1%) 18 (58.1%) 13 (41.9%) 0 (0.0%)

SP medium 8 (21.1%) 15 (48.4%) 10 (55.6%) 8 (25.8%) 10 (32.3%) 2 (28.6%)

SP weak 23 (60.5%) 16 (51.6%) 6 (33.3%) 5 (16.1%) 8 (25.8%) 5 (71.4%)

Sum SP 38 (100.0 %) 31 (100.0%) 18 (100.0%) 31 (100.0 %) 31 (100.0%) 7 (100.0%)

Logic strong 26 (89.7%) 14 (53.8%) 7 (29.2%) 17 (89.5%) 16 (88.9%) 9 (60.0%)

Logic medium 2 (6.9%) 10 (38.5%) 12 (50.0%) 2 (10.5%) 2 (11.1%) 4 (26.7%)

Logic weak 1 (3.4%) 2 (7.7%) 5 (20.8%) 0 (0.0%) 0 (0.0%) 2 (13.3%)

Sum Logic 29 (100.0 %) 26 (100.0%) 24 (100.0%) 19 (100.0 %) 18 (100.0%) 15 (100.0%)

FC strong 28 (96.6%) 13 (50.0%) 12 (50.0%) 18 (94.7%) 17 (94.4%) 10 (66.7%)

FC medium 0 (0.0%) 10 (38.5%) 7 (29.2%) 1 (5.3%) 1 (5.6%) 4 (26.7%)

FC weak 1 (3.4%) 3 (11.5%) 5 (20.8%) 0 (0.0%) 0 (0.0%) 1 (6.7%)

Sum FC 29 (100.0 %) 26 (100.0%) 24 (100.0%) 19 (100.0%) 18 (100.0%) 18 (100.0%)

Codes Module 3.1 Module 3.2 Module 3.3 Module 4.1 Module 4.2 Module 4.2

UP strong 1 (3.7%) 0 (0.0%) 0 (0.0%) 1 (3.1%) 2 (7.7%) 0 (0.0%)

UP medium 11 (40.7%) 10 (37.0%) 6 (35.3%) 12 (37.5%) 6 (23.1%) 4 (30.8%)

UP weak 15 (55.6%) 17 (63.0%) 11 (64.7%) 19 (59.4%) 16 (69.2%) 9 (69.2%)

Sum UP 27 (100.0%) 27 (100.0%) 17 (100.0%) 32 (100.0%) 26 (100.0%) 13 (100.0%)

SP strong 0 (0.0%) 0 (0.0%) 0 (0.0%) 9 (26.5%) 10 (50.0% 2 (33.3%)

SP medium 1 (25.0%) 3 (75.0%) 1 (50.0%) 15 (44.1%) 5 (25.0%) 3 (50.0%)

SP weak 3 (75.0%) 1 (25.0%) 1 (50.0%) 10 (29.4%) 5 (25.0%) 1 (16.7%)

Sum SP 4 (100.0%) 4 (100.0%) 2 (100.0%) 34 (100.0%) 20 (100.0%) 6 (100.0%)

Logic strong 14 (70.0%) 15 (88.2%) 6 (54.5%) 16 (80.0%) 14 (70.0%) 8 (44.4%)

Logic medium 5 (25.0%) 2 (11.8%) 5 (45.5%) 4 (20.0%) 5 25.0% 7 (38.9%)

Logic weak 1 (5.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (5.0%) 3 (16.7%)

Sum Logic 20 (100.0%) 17 (100.0%) 11 (100.0%) 20 (100.0%) 20 (100.0%) 18 (100.0%)

FC strong 17 (85.0%) 15 (88.2%) 7 (63.6%) 16 (80.0%) 14 (70.0%) 9 (50.0%)

FC medium 3 (15.0%) 2 (11.8%) 4 (36.4%) 4 (20.0%) 6 (30.0%) 7 (38.9%)

FC weak 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (11.1%)

Sum FC 20 (100.0%) 17 (100.0%) 11 (100.0%) 20 (100.0%) 20 (100.0%) 18 (100.0%)

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

7

6

5

4

3

2

1

ICL module 1

1 2 3 4 5

measurement time

7

6

5

4

3

2

1

ECL module 1

1 2 3 4 5

measurement time

7

6

5

4

3

2

1

Compliance module 1

1 2 3 4 5

measurement time

wave. The context of the study is a plugged CS educational

environment using a block-based programming language. To

the best of our knowledge, there is little research only in

unplugged settings in the area of semantic wave in the design

and reflection of instructions in CS education in the case

studies of [4] and [5]. Our proposed model in the area of

algorithmic thinking is also intended to support pre-service

computer science teachers in designing instructional processes
(a) ICL Module 1

ICL module 2

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(d) ICL Module 2

ICL module 3

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(g) ICL Module 3

ICL module 4

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(j) ICL Module 4

(b) ECL Module 1

ECL module 2

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(e) ECL Module 2

ECL module 3

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(h) ECL Module 3

ECL module 4

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(k) ECL Module 4

(c) CP Module 1

Compliance module 2

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(f) CP Module 2

Compliance module 3

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(i) CP Module 3

Compliance module 4

7

6

5

4

3

2

1

1 2 3 4 5

measurement time

(l) CP Module 4

that are easy to implement and facilitate rapid planning and

reflection for K-12 computer science (CS) education. This

study also deals with the refinement of the model through

a longer duration (4 Modules 90 min each instead of 1

Module), of the incorporation of notional machines and the

computational action approach to improve the training of

future CS teachers and students for the challenges of digital

transformation (see Fig. 2).

The analysis of the qualitative data for RQ1 (To what

degree do K-12 students’ competence in algorithmic thinking

develop?) shows that the students solved the Modules 1, 2 and

4 in the categories solve problem, using notional machines

predominantly in the characteristics medium and strong com-

pared to the text response tasks (category understand prob-

lem). In the categories flow control and logic (programming

solutions), the student solutions (Scratch programs) were even

predominantly strongly and moderately mapped in all four

Modules. Since the difficulty of the Modules in the workshop

increases, this suggests that the students’ algorithmic thinking

competence has been promoted, while no significant statistical

increase in algorithmic thinking is observed for RQ1. These

results of the quantitative analysis could be due to a number of

reasons, such as the number of participants, as the sample size

of N=39 is not too large, and e.g. in [41] an improvement in

problem solving was shown with a Scratch intervention with

113 participants and a duration of one month. The duration

of the intervention could also be a reason, as in [42] an

improvement in problem solving was shown with a Scratch

Fig. 9. Intrinsic Cognitive Load (ICL), Extraneous Cognitive Load (ECL)
and Compliance (CP) with Mean and Standard Deviation.

Fig. 10. Occurrence of the semantic wave categories in the characteristics
weak (color light grey), medium (color dark grey) and strong (color black),
phases 2-4 per student.

intervention with only 28 participants but a duration of 2

semesters. Of course, both the number of participants and the

duration could be the reason for the non-significant statistical

results, as in [43] an improvement in problem solving was

shown with a Scratch intervention of 139 participants and a

duration of 1 semester. Certainly, it also remains to be investi-

gated whether a statistically significant increase in algorithmic

thinking occurs when the difficulty of the task or the context,

such as physical computing [44], is varied. Finally, it should

be mentioned that the treatment and control group is not fully

randomized. All this should be taken into account in a follow-

up study.

In RQ2 (How are the phases of the semantic wave perceived

by the students?), analysis of the quantitative data from all

four workshop Modules revealed a wave-like course of ICL

measurements similar to the course of a semantic wave and

a declining trend in ECL measurements across all Modules.

This suggests that the phases of the semantic wave of the

workshop were appropriately perceived by the students and

that the design of the workshop was basically in line with

mean

standard deviation

mean

standard deviation

mean

standard deviation

mean

standard deviation

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

L
ik

e
rt
−

S
c
a
le

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

the planning of a semantic wave. Since according to [38]

the ICL depends on two different factors, the interactivity of

the element and the learner’s prior knowledge, this should of

course be investigated in a subsequent study with different par-

ticipants or intervention settings, e.g. using a constructionism

versus a semantic wave approach [45]. Following the work of

[46] and [47], who investigated both the relationship between

cognitive load and learning programming with block-based

programming languages or simulation games, the relationship

between cognitive load and a semantic wave could also be

investigated in more detail. Qualitatively, no semantic wave

was detectable in the textual responses of the students. The

first aim of this study was to explore and test the SWAT model

as a whole, so the next interesting step would be to examine

the individual phases of the semantic wave more in detail. This

could be done, for example, using think-aloud approaches or

interviews to examine the semantic wave flow more closely,

as described in [5] for unplugged settings. In this context,

the relationship between notional machines (flowcharts) and

semantic waves could be further investigated. The use of

flowcharts (notional machines) in the problem-solving phase

(category solve problem) was new in this second study of

the SWAT model. The flowcharts almost consistently provided

better categorical results in terms of algorithmic thinking than

the text responses in the understand problem step. This could

be an indication of a notional machine effect mentioned in

[23], that the use of a notional machine increases semantic

gravity and decreases semantic density (see Figure 1 and

section II-D) and thus makes a concept or here a problem

more understandable. This should be explored in more detail,

perhaps by comparing exclusively textual responses in the

problem-solving step with exclusively flowcharts in this step,

and provides a great opportunity for further research into the

relationship between a semantic wave and the use of notional

machines.

The study workshop is also designed to address treatment

fidelity categories of [27] (see sec. IV). Quality is addressed

by an additional item where students rate their personal effort

(see Fig. 9c), 9f), 9i) and 9l)). The rating is high in all four

workshop Modules, with a decrease towards the end, so the

overall quality is very well met although the level of difficulty

of the workshop increased from Module to Module and also

within a Module along the semantic wave. This is perhaps

an indication that the requirement for computational action,

which was incorporated into the design of this workshop,

could have a positive effect on compliance. However, this

would need to be investigated further - for example, through

qualitative interviews that examine precisely this question.

The qualitative results for RQ1 showed that in all Modules

algorithmic thinking competence decreases in phase 4 (see

Fig. 7 and 8, Tab.I), while both students’ compliance and

ICL scores were high (Fig.9). The results of the qualitative

analysis in terms of semantic density and semantic gravity

were also mostly weak characterised in this phase (Fig.10).

This suggests that semantic density may have been higher

and semantic gravity lower than predicted in phase 4 in all

Modules, especially in Module 3, since the analyzed data show

weaker results here than in the other Modules.

VII. CONCLUSIONS

Overall, it is important to note that the focus of this study is

on the experience of using a semantic wave in CS education

to promote algorithmic thinking. The results show, on the one

hand, that the K-12 students seem to have experienced the

phases of the semantic wave accordingly and, on the other

hand, that in all Modules the phases 4 in terms of the semantic

wave have more semantic density (technical jargon) and less

semantic gravity (complexity of the task) than originally

intended. In addition, the qualitative data show a promotion

of algorithmic thinking - both in the use of notional machine

and in block-based programming. However, the statistical

results were limited due to sample size and study design.

In conclusion, the strategy of combining semantic wave with

algorithmic thinking steps in a model with the integration of

notional machines and computational action-oriented content

is a promising approach that provides a strategy for prospective

CS teachers to accurately plan instructional steps and reflect

on them after the fact, as is done in the discussion here,

but should be pursued further. The present study therefore

opens up exciting new directions for research in K-12 CS

education, e.g., the connections between semantic wave and

notional machine in more detail or to further enhance the

competence of algorithmic thinking by integrating productive

failure approaches into the model.

Future research on the SWAT model should therefore per-

haps investigate shortening the semantic wave phases by one,

e.g. phase 4, to give students more time for problem solving

and thus for algorithmic thinking. The comparison with the

misconceptions studied by [48] could also be helpful in the

design of the SWAT model - this needs to be investigated. To

increase the competence of algorithmic thinking, the produc-

tive failure approach of [49] could also be a possible extension

of the model to further enhance algorithmic thinking and thus

digital competences. Next steps will focus on revising the

SWAT model to better promote students’ algorithmic thinking

competences by intensifying the problem-solving process.

REFERENCES

[1] A. Juskeviciene and V. Dagiene, “Computational thinking relationship
with digital competence,” Informatics in Education, vol. 17, no. 2,
pp. 265–284, 2018.

[2] J. M. Wing, “Computational thinking and thinking about computing,”
Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, vol. 366, no. 1881, pp. 3717–3725, 2008.

[3] K. Maton, “Making semantic waves: A key to cumulative knowledge-
building,” Linguistics and Education, vol. 24, no. 1, pp. 8–22, 2013.

[4] P. Curzon, J. Waite, K. Maton, and J. Donohue, “Using semantic waves
to analyse the effectiveness of unplugged computing activities,” ACM
International Conference Proceeding Series, 2020.

[5] J. Waite, K. Maton, P. Curzon, and L. Tuttiett, “Unplugged computing
and semantic waves: Analysing crazy characters,” ACM International
Conference Proceeding Series, no. September, 2019.

[6] F. Ritter and B. Standl, “Promoting Student Competencies in Informatics
Education by Combining Semantic Waves and Algorithmic Thinking,”
Informatics in Education, 2022.

[7] J. Sorva, “Notional machines and introductory programming education,”
ACM Transactions on Computing Education, vol. 13, no. 2, 2013.

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

[8] M. Tissenbaum and A. Ottenbreit-Leftwich, “A vision of K—,” Com-
munications of the ACM, vol. 63, no. 5, pp. 42–44, 2020.

[9] B. Standl, B. Standl, J. Rosato, A. Leftwich, and V. Fragapane, “(How)
Do They Bring Computer Science to Everyone? Pre-Service Computer
Science Teacher Programs in Germany and in the USA,” Society for
Information Technology Teacher Education International Conference,
vol. 2020, no. 1, pp. 631–637, 2020.

[10] S. Papert, Mindstorms. Birkha¨user Basel, 1982.

[11] M. Lodi, “Informatical Thinking,” Olympiads in Informatics, vol. 14,
pp. 113–132, 2020.

[12] B. Standl, “Solving everyday challenges in a computational way of
thinking,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 10696 LNCS, no. November, pp. 180–191, 2017.

[13] N. O. Ezeamuzie, J. S. Leung, R. C. Garcia, and F. S. Ting, “Discovering
computational thinking in everyday problem solving: A multiple case
study of route planning,” Journal of Computer Assisted Learning,
vol. 38, no. 6, pp. 1779–1796, 2022.

[14] B. Standl, “A case study on cooperative problem solving processes in
small 9th grade student groups,” in 2016 IEEE Global Engineering
Education Conference (EDUCON), pp. 961–967, IEEE, 2016.

[15] M. Tissenbaum, J. Sheldon, and H. Abelson, “Viewpoint from computa-
tional thinking to computational action,” Communications of the ACM,
vol. 62, no. 3, pp. 34–36, 2019.

[16] GI, “Dagstuhl-Erkla¨rung: Bildung in der digitalen vernetzten Welt.
Eine gemeinsame Erkla¨rung der Teilnehmerinnen und Teilnehmer des
Seminarsauf Schloss Dagstuhl –Leibniz-Zentrum fu¨r Informatik GmbH,”
2016.

[17] Z. Jina Asvat, “Semantic waves and their affordances for teaching
scaffolding to pre-service teachers,” Reading Writing, vol. 13, no. 1,
pp. 1–10, 2022.

[18] S. Sheng, “Research on College English Classroom Construction Based
on Semantic Wave,” Journal of Contemporary Educational Research,
vol. 7, no. 3, pp. 49–54, 2023.

[19] H. Montiel and M. G. Gomez-Zermen˜o, “Educational challenges for
computational thinking in k–12 education: A systematic literature review
of “scratch” as an innovative programming tool,” Computers, vol. 10,
no. 6, 2021.

[20] L. C. Zhang and J. Nouri, “A systematic review of learning compu-
tational thinking through Scratch in K-9,” Computers and Education,
vol. 141, no. June, p. 103607, 2019.

[21] M. Resnick, J. Maloney, A. Monroy-Herna´ndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and

Y. Kafai, “Scratch: Programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[22] J. Moreno-Leon and G. Robles, “Code to learn with Scratch ?,” 2016
IEEE Global Engineering Education Conference (EDUCON), no. April,
pp. 150–156, 2016.

[23] S. Fincher, J. Jeuring, C. S. Miller, P. Donaldson, B. Du Boulay,
M. Hauswirth, A. Hellas, F. Hermans, C. Lewis, A. Mu¨hling, J. L.
Pearce, and A. Petersen, “Notional Machines in Computing Education:
The Education of Attention,” Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, pp. 21–50, 2020.

[24] Robert K. Yin, Case Study Research and Applications Design and
Methods Sixth Edition. 2018.

[25] M. Roma´n-Gonza´lez, “Computational Thinking Test: Design Guidelines
and Content Validation,” Proceedings of the 7th Annual International
Conference on Education and New Learning Technologies (EDULEARN
2015), no. July 2015, pp. 2436–2444, 2015.

[26] L. M. Sanetti, B. G. Cook, and L. Cook, “Treatment Fidelity: What It
Is and Why It Matters,” Learning Disabilities Research and Practice,
vol. 36, no. 1, 2021.

[27] S. W. Smith, A. P. Daunic, and G. G. Taylor, “Treatment fidelity in
applied educational research: Expanding the adoption and application of
measures to ensure evidence-based practice,” Education and Treatment
of Children, vol. 30, no. 4, pp. 121–134, 2007.

[28] H. Hoijtink, J. Mulder, C. van Lissa, and X. Gu, “A Tutorial on Testing
Hypotheses Using the Bayes Factor,” Psychological Methods, 2019.

[29] E. J. Wagenmakers, R. Wetzels, D. Borsboom, and H. L. van der Maas,
“Why Psychologists Must Change the Way They Analyze Their Data:
The Case of Psi: Comment on Bem (2011),” Journal of Personality and
Social Psychology, vol. 100, no. 3, 2011.

[30] M. Bosman, Robust Bayes factors for Bayesian ANOVA: overcoming
adverse effects of non-normality and outliers. Msc thesis, Utrecht
University, 2018.

[31] P. A. Lachenbruch and J. Cohen, “Statistical Power Analysis for the
Behavioral Sciences (2nd ed.).,” Journal of the American Statistical
Association, vol. 84, no. 408, 1989.

[32] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, 2000.

[33] P. Mayring and T. Fenzl, Handbuch Methoden der empirischen Sozial-
forschung. Springer Fachmedien Wiesbaden, 2019.

[34] J. Moreno-Leo´n and G. Robles, “Dr. Scratch: A web tool to au-
tomatically evaluate scratch projects,” ACM International Conference
Proceeding Series, vol. 09-11-Nove, no. October, pp. 132–133, 2015.

[35] F. Ritter, “Category system for all modules.”
https://cloudfiles.mpgg.de/index.php/s/oAjnHfG2mkttPS4, 2024.
Accessed: March 1, 2024.

[36] J. Sweller, J. J. Van Merrienboer, and F. G. Paas, “Cognitive Architecture
and Instructional Design,” Educational Psychology Review, vol. 10,
no. 3, pp. 251–296, 1998.

[37] J. Sweller and P. Chandler, “Why Some Material is Difficult to Learn,”
Cognition and Instruction, vol. 12, no. 3, pp. 185–233, 1994.

[38] J. Sweller, J. J. van Merrie¨nboer, and F. Paas, “Cognitive Architecture
and Instructional Design: 20 Years Later,” Educational Psychology
Review, vol. 31, no. 2, pp. 261–292, 2019.

[39] M. Klepsch, F. Schmitz, and T. Seufert, “Development and validation of
two instruments measuring intrinsic, extraneous, and germane cognitive
load,” Frontiers in Psychology, vol. 8, no. NOV, 2017.

[40] A. Skulmowski and G. D. Rey, “Subjective cognitive load surveys lead
to divergent results for interactive learning media,” Human Behavior and
Emerging Technologies, vol. 2, no. 2, pp. 149–157, 2020.

[41] Q. Brown, W. Mongan, D. Kusic, E. Garbarine, E. Fromm, and
A. Fontecchio, “Computer Aided Instruction as a Vehicle for Problem
Solving: Scratch Programming Environment in the Middle Years Class-
room,” ASEE Annual Conference and Exposition, Conference Proceed-
ings, 2008.

[42] D. Giordano and F. Maiorana, “Use of cutting edge educational tools for
an initial programming course,” in IEEE Global Engineering Education
Conference, EDUCON, pp. 556–563, 2014.

[43] S.-c. Kong, H. Abelson, and M. Lai, Computational Thinking Education.
Springer Singapore, 2019.

[44] F. Ritter and B. Standl, “Promoting Computational Thinking in Teacher
Education - Combining Semantic Waves and Algorithmic Thinking,” in
Proceedings of the 2022 ACM Conference on International Computing
Education Research - Volume 2, ICER ’22, (New York, NY, USA),
pp. 48–49, Association for Computing Machinery, 2022.

[45] F. Ritter, N. Schlomske-Bodenstein, and B. Standl, “Integration of an
Informatics Teaching-Learning Laboratory into Pre-Service Informatics
Teacher Education,” 2023.

[46] U¨ . C ̧akirog˘lu, S. S. Suic¸mez, Y. B. Kurtog˘lu, A. Sari, S. Yildiz, and

M. O ̈ztu¨rk, “Exploring perceived cognitive load in learning programming
via scratch,” Research in Learning Technology, vol. 26, no. 1063519,
pp. 1–19, 2018.

[47] N. Pellas, “Exploring relationships among students’ computational
thinking skills, emotions, and cognitive load using simulation games
in primary education,” Journal of Computer Assisted Learning, vol. n/a,
no. n/a.

[48] Y. Qian, S. Hambrusch, A. Yadav, S. Gretter, and Y. Li, “Teachers’
Perceptions of Student Misconceptions in Introductory Programming,”
Journal of Educational Computing Research, vol. 58, no. 2, pp. 364–
397, 2020.

[49] M. Kapur, “Productive failure,” Cognition and Instruction, vol. 26, no. 3,
pp. 379–424, 2008.

Authorized licensed use limited to: University of Sydney. Downloaded on October 10,2024 at 01:58:34 UTC from IEEE Xplore. Restrictions apply.

