
Learning an Explanatory Model of Data-Driven Technologies can
Lead to Empowered Behavior

A Mixed-Methods Study in K-12 Computing Education

Lukas Höper
lukas.hoeper@uni-paderborn.de

Paderborn University
Paderborn, Germany

Carsten Schulte
carsten.schulte@uni-paderborn.de

Paderborn University
Paderborn, Germany

Andreas Mühling
muehling@leibniz-ipn.de

Kiel University
Kiel, Germany

Leibniz Institute for Science and
Mathematics Education

Kiel, Germany

ABSTRACT
Background and Context.One goal of K-12 computing education is to
teach computational concepts that support learners in responsibly
and competently using and evaluating digital technologies. How-
ever, recent research indicates that students struggle to make use
of such concepts in everyday life. Additionally, research shows that
people develop powerlessness and resignation about data-driven
technologies, leading to passive user roles. This raises the ques-
tion of how to support students’ empowerment in navigating and
shaping the digital world.

Objectives. This paper presents a study investigating how under-
standing concepts of data-driven technologies supports students’
empowerment in everyday life. It involves developing an educa-
tional approach to support students in relating learned concepts to
everyday experiences, called learning explanatory models.

Method.We have developed a Rasch-scaled instrument to mea-
sure understanding of data-driven technologies and motivation,
intention, and empowered behavior in engaging with them in ev-
eryday life. Using this instrument, the study evaluates the explana-
tory model approach, which specifically supports such relations
between concepts learned in computing and students’ everyday
experiences.

Findings. The results suggest that understanding of data-driven
technologies according to our explanatory model leads to empow-
ered behaviors in everyday interactions with such technologies.
They also indicate improvements in students’ understanding, inten-
tions, and empowered behaviors in everyday life, while motivation
did not significantly increase. We interpret that the approach sup-
ports students to make use of the concepts in everyday life and be
more empowered in a digital world.

Implications. This paper demonstrates how the relationship be-
tween learning about data-driven technologies and the develop-
ment of students’ empowerment in everyday life can be examined.
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It shows how computing education can reduce students’ resigna-
tions and powerlessness regarding data-driven technologies and
support them in adopting more informed and empowered roles in
navigating the digital world.
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1 INTRODUCTION
According to international K-12 computing education frameworks
and research discussions, a goal of computing education at school
level is to empower students to understand and navigate the digital
world. For example, the ACM K-12 Computer Science Framework
[49] or the Informatics Reference Framework for European com-
puting education [16] emphasize enabling students to be informed
citizens who understand digital technologies and the digital world.
This involves understanding the role of CS in the world, participat-
ing in public discussion about CS topics, and competent and respon-
sible use of digital technologies [49, p. 10] [16, pp. 4-5]. Given the
prevalence of artificial intelligence (AI) and machine learning (ML)
in everyday life, developing evidence-based teaching approaches
about such data-driven technologies becomes an important topic in
computing education. Understanding these technologies is neces-
sary for competently using and evaluating individual and societal
implications, reflecting on their role in the world, and shaping
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the digital world accordingly [48, 55, 79].1 Therefore, teaching ap-
proaches should enable students to understand and reflect on the
data-driven technologies from everyday life in order to become
informed citizens empowered to engage in technological develop-
ments, instead of accepting such technologies as given.

In recent years, several approaches were developed to teach
students about AI and ML concepts and enabling them to design
and develop ML applications [38, 57, 68, 85]. As technologies using
ML methods are driven by data practices, the role of data in these
systems is essential [82, 84]. Consequently, teaching about data-
driven technologies also involves teaching about data [38, 45, 57].
According to the goals of empowering to understand the digital
world, students should be able to make use of these concepts learned
in computing when encountering digital technologies in everyday
life. They are required to relate and apply their knowledge of AI
and ML to everyday situations. However, research indicates that
students struggle to relate learned concepts about data and ML to
everyday life and connect them to their everyday perspectives [e.g.,
8, 10, 33, 88]. For example, studies report that students effectively
learned basic ML concepts and could design ML applications but
could not apply them to everyday situations [37, 88].

Students’ motivations and intentions further reinforce this chal-
lenge of supporting students in using concepts learned in comput-
ing classes in daily situations, especially in the case of data-driven
technologies. Research shows that many people develop feelings of
resignation, powerlessness, and learned helplessness regarding the
role of data in such situations, suggesting a clear passive role [e.g.,
23, 24, 40, 44, 50]. However, empowering them involves enabling
them to shift their focus to the inner workings of such technologies,
rather than solely on their immediate user goal in these interac-
tions (e.g., sharing personal experiences with friends). This research
suggests that people may not see value in engaging with the inner
workings of data-driven technologies or perceive themselves as
competent enough to do so, which is at odds with the goals of
empowerment.

This raises the need for approaches in K-12 computing educa-
tion that support students in (1) relating computational concepts
of data-driven technologies to their everyday experiences and (2)
developing empowerment in a digital world accordingly. Therefore,
this paper presents a study addressing these questions and focusing
on bridging the gap between students’ everyday user perspectives
on data-driven technologies and an empowered, CS-informed per-
spective as a foundation for navigating the digital world.

Accordingly, we developed an educational approach termed
learning explanatory models, in which students learn a model of
data-driven technologies. This model is an educationally motivated
composition of computational concepts of data-driven technologies,
somewhat similar to notional machines designed to understand
traditional programs in programming education [see 27]. This ap-
proach aims to enable students to apply the model in their everyday
interactions with such technologies. In doing so, the model serves
as a lens for reconstructing the inner workings of such technolo-
gies, which supports students in understanding and reflecting on

1In this paper, "competent use" refers to interactions with digital artifacts that are
based on an understanding of its inner workings and technical aspects. Similarly, we
use the term of "engaging with digital technologies" to refer to engaging with how
they work and what they are for.

these technologies and their individual and societal impacts. Thus,
the core idea is to provide students with a model as a useful tool
for analyzing, understanding, and reflecting on the data-driven
technologies they encounter in everyday life.

To evaluate this approach, we developed an intervention for com-
puting education. It allowed us to examine students’ understanding
of the explanatory model, their motivations and intentions to en-
gage with the inner workings of everyday data-driven technologies,
and their empowered behavior when interacting with such tech-
nologies. The study uses an instrument we have developed in our
research project before. The evaluation of the intervention builds
on data from 𝑁 = 93 students from grades 9 and 10 (about 15 to
16 years old) in two European countries. The study examines the
following research questions:
RQ1. To what extent do students develop an understanding of

data-driven technologies from their everyday lives?
RQ2. To what extent does learning the explanatory model affect

students’ motivations and intentions to engage with the
inner workings of data-driven technologies in everyday life?

RQ3. To what extent does learning the explanatory model support
students in empowered behavior in everyday interactions
with data-driven technologies?

2 BACKGROUND
Regarding the aims of this study and the focus on the role of data
in data-driven technologies, this section discusses prior work on
teaching and learning about data-driven technologies, related re-
search on powerlessness and resignation about their data practices,
and underlying theoretical background.

2.1 Teaching and Learning about Data-Driven
Technologies

For several years, much attention has been paid to how AI and
ML could be taught at the school level, emphasizing AI literacy
and AI education. Some meta-reviews already provide overviews in
this fast-growing research field [e.g., 15, 38, 57, 75]. The literature
shows several ideas for effectively teaching AI and ML concepts
[e.g., 25, 42, 55, 88, 94]. This involves, for example, developing ML
models or applications [25, 88, 94]. One promising trend is using
and developing educational tools that offer easy options for design-
ing ML applications [e.g., 42, 94]. These tools are designed to make
learning ML accessible even without prior programming experi-
ence. They allow students and teachers to focus on the conceptual
aspects, such as training and testing ML models, rather than pro-
gramming at code level, following the principle of ’low floors, high
ceiling, and wide walls’ [74], making learning about AI and ML
a realistic and achievable goal for young students. In addition, a
few approaches also delve into critical perspectives, for instance,
discussing ethical and societal implications of AI systems to en-
able students to become informed and responsible consumers of
AI technologies [55]. Another example is ethically redesigning AI
technologies from everyday life, encouraging students to envision
a future world with AI they desire [22]. While distinguishing dif-
ferent levels of learning outcomes about AI (e.g., technical aspects
of ML models and ethical considerations), Rizvi et al. [75] analyzed
literature on K-12 AI education. They consider four levels: engines,
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models, applications, and social and ethical considerations [see 75].
Their literature review showed that while many approaches focus
on ML models and respective AI applications, they often neglect
societal and ethical considerations.

As data-driven technologies rely on the data used to train the
models, the role of data is essential in such technologies and strongly
influences their behavior [see 82, 84]. Hence, AI education also in-
cludes relations to data-related concepts and data literacies [38, 45,
57]. Such data literacies involve a wide range of approaches, which
primarily focus on practical data handling skills, such as collecting,
analyzing, and evaluating data (for a comprehensive overview of
different perspectives, see [33]). Additionally, there are calls for
broader perspectives like critical reflections on data practices and
their societal and ethical implications [e.g., 8, 71].

Regarding personal involvement in learning data or data-driven
concepts, research demonstrated positive effects when contextual-
izing in personal, relevant situations or perspectives. For example,
Register and Ko [73] found that learning with personal data can
support understanding ML concepts. Similarly, Bilstrup et al. [8]
highlighted the importance of linking data and ML concepts to
personal data, facilitating students’ engagement and prompting
reflection on data practices in their personal lives.

In summary, teaching about data-driven technologies in K-12
encompasses learning basic data and AI concepts, understanding AI
technologies, working with data, developing AI applications, and
critically evaluating individual and societal implications. Despite
the importance of understanding and evaluating digital technolo-
gies from a user perspective according to the aims discussed at the
beginning, a designer-oriented viewpoint is omnipresent, neglect-
ing perspectives like reconstructing these technologies and their
impact [65, 75].

2.2 Everyday User Perspectives and Designer
Perspectives

Students frequently use data-driven technologies in everyday lives,
such as social media applications, streaming services, and search
engines. Through these interactions, students form perceptions,
gain experiences, and may develop misconceptions about data-
driven technologies, as examined in several studies [62, 63, 67, 76].
Building on these perceptions and experiences within constructivist
learning approaches can effectively scaffold students’ understand-
ing of computational concepts and their relation to everyday life.
However, the predominant focus on designer-oriented views in
K-12 AI education creates a discrepancy in students’ roles in every-
day interactions with such technologies, as they usually have no
designer roles.

Various versions of a continuum between user and designer roles
are described in the literature [21, 28, 77, 79, 80]. This continuum
delineates the difference between using digital technologies and
actively designing and shaping them. For instance, regarding the
role of digital technologies in everyday life, Rushkoff [77] posits the
dichotomy of “program or being programmed” to argue that when
not being empowered to create and design digital technologies,
individuals must adapt themselves to technologies made by others.
From this perspective, K-12 computing education aims at facilitating

transitions from passive user roles to active designer roles, that is,
empowering them to shape the digital world [21, 49, 79].

Drawing on examining students’ attitudes towards computing,
Schulte and Knobelsdorf [80] advocate for integrating professional
use perspectives when learning to design digital technologies to
support different pathways in computing. When confined to design-
ing digital artifacts, students face challenges translating abstract
concepts learned in computing classes into everyday life contexts,
as evidenced by research findings. Studies indicate students’ limited
understanding of the role of data and data practices in everyday
digital technologies [e.g., 10, 13, 36, 45, 71, 72, 84]. When learning
about data practices or data-driven technologies, studies report that
students struggle to relate this to their everyday lives [10, 33, 37, 88].
For instance, students may find it challenging to recognize their
role as data sources when using data-driven applications [33] and
to grasp such concepts of data on a concrete personal level [10].
Additionally, a study revealed that while students learned about
ML concepts and designing ML applications, they did not critically
reflect on the data-driven practices in their everyday lives [88].

Taken together, relating computational concepts to everyday
situations and using them when encountering data-driven tech-
nologies poses a significant challenge for students.

2.3 Motivation and Intention as Drivers for
Using Concepts in Everyday Life

When examining whether students effectively engage with the
inner workings of data-driven technologies in everyday life and
apply the computational concepts learned in computing classes,
motivational and intentional factors play a crucial role in addition
to understanding the concepts. Drawing from theories of human
behavior, the Rubicon model is frequently referenced, stating that
actions (e.g., using the concepts in everyday life) are determined in
four phases of goal setting and goal striving: predecisional, preac-
tional, actional, and postactional [1, pp. 486-490]. According to this
model, motivation and intention are crucial for actions, as cross-
ing a boundary is required to initiate behavior after goal setting.
While motivation pertains to the choice of goals (i.e., the decision-
making), intention refers to committing to realizing this goal and
making a respective plan [1, 41]. Therefore, this study incorpo-
rates motivation and intention to engage with the inner workings
of data-driven technologies in everyday life, with the theoretical
foundation described below.

We adopt the expectancy-value model in this study, as widely
used in educational research for understanding motivation [92]. It
elucidates the factors influencing why individuals choose, initiate,
and direct their engagement in activities, such as engaging with the
inner workings of data-driven technologies. Motivation, according
to this model, comprises two components. Firstly, expectancy con-
cerns beliefs and confidence in one’s ability to complete or succeed
in a specific task or activity [92]. This aligns with the concept of
self-efficacy proposed by Bandura [3] [see also 92], which refers to
individuals’ beliefs in their capacity to act successfully in a given
situation and achieve desired outcomes. Self-efficacy is specific to
particular contexts or actions [3, p. 42]. Research indicates that it
significantly influences peoples’ decisions and behavior, thus pre-
dicting effort, engagement, and achievement in the targeted activity
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or behavior [3, 81]. Secondly, as described by Wigfield and Eccles
[92, 93], the value component comprises intrinsic value, attainment
value (or importance), utility value, and cost (see for further dis-
tinctions: [93]). Intrinsic, attainment and utility values positively
influence motivation, whereas cost diminishes individuals’ willing-
ness to engage in the activity [93]. These value components are
related to individuals’ interests in contents as the perception of
value is one of the dimensions in interest development [see 64]. Per-
ceiving such a value in learning can influence students’ long-term
interest and engagement in computing topics [64].

In addition to motivation, we consider intention, which refers to
the commitment to and planning for goal achievement. One type of
behavioral intention is implementation intention, which involves
planning to realize a goal in specific situations, that is, committing to
a particular course of actions and behavior [1, 35]. These intentions
often take the form of if-then plans, specifying when, where, and
how to realize the goal [35]. Several studies provide evidence that
implementation intentions positively influence goal attainment
and behavior initiation [for an overview, see 35], thus leading to
the formation of behaviors and habits [90]. Additionally, research
indicates that motivation can predict individuals’ intentions and
choices of activities [91], although intentions do not necessarily
imply motivation for the given activity [2].

2.4 Further Challenges Due to Perceived
Powerlessness and Resignation

Students’ experiences with data-driven technologies profoundly
influence their motivations and intentions. Negative experiences
with data-driven technologies from daily life can hinder students
from effectively applying computational concepts in everyday situ-
ations, particularly when they perceive this as useless. In the realm
of data-driven technologies, especially with an emphasis on the role
of data, students’ perspectives, feelings, and attitudes regarding
data-driven practices were investigated.

The theory of learned helplessness, a well-established concept,
is particularly relevant in contexts of data-driven technologies. It
concerns perceived independence of one’s actions and the respec-
tive outcome, fostering a belief of futility of one’s behavior [58].
This sense of helplessness extends across affective and cognitive di-
mensions. In this respect, several conceptual frameworks emerged
in privacy research: privacy apathy [40, 50], privacy cynicism [44],
privacy fatigue [19], privacy helplessness [18], and resignation [24].
They denote feelings of powerlessness or resignation concerning
personal data and individuals’ control over data privacy and data
practices involving those practices in data-driven technologies.

This can lead to what is known as the privacy paradox, describing
a dissonance between individuals’ privacy concerns and actual
privacy behaviors [5, 6]. Recent research indicates that students are
concerned about data practices but often feel powerless to make
a difference, lack understanding of the implications, and want to
learn more about it [23, 78]. Studies report that learning about data
practices does not necessarily alter students’ intentions to disclose
personal data [8] or alleviate feelings of powerlessness [40].

Overall, this research indicates that students’ feelings of pow-
erlessness and resignation toward the role of data in digital tech-
nologies contradict the goals of empowerment discussed at the

beginning. Such resignation and powerlessness would increase the
risk of being a passive consumer, potentially preventing students
from engaging with these technologies’ inner workings, even if
they had experiences in designer roles. Therefore, computing educa-
tion needs approaches to support students in using the concepts in
everyday interactions with data-driven technologies and encourage
them to actively explore the inner workings of such technologies
rather than passively using them. To target this gap, we developed
an approach that addresses students from their user perspective
and equips them with an explanatory model to support understand-
ing and evaluating the inner workings and influences of everyday
data-driven technologies.

3 EDUCATIONAL APPROACH OF
EXPLANATORY MODELS

This section outlines the educational approach of learning explana-
tory models as the foundation for this study. Its core idea is to
explicitly teach students a model designed from an educational per-
spective - in contrast to a model taken directly from CS. It should
provide an explanation for computational concepts and digital tech-
nologies. Thus, the approach aims to support students in learning
concepts in a way that helps them form mental models useful to
understanding data-driven technologies they encounter in every-
day life. It is similar to teaching notional machines in programming
education used to explain the behavior of programs during their
execution (see for an overview: [27]). However, while notional ma-
chines are taught as a vehicle until students understand the real
behavior of programs, explanatory models are taught as an end
goal themselves.

We have designed an explanatory model focused on the role of
data in data-driven technologies, providing a specific lens on these
technologies (a prior versionwas published in [45]).We hypothesize
that learning this model supports students in using it as a lens or
tool to analyze and evaluate data-driven technologies they interact
with in everyday life, that is, to understand their inner workings
and reflect on the interactions with these technologies. Below, we
describe this explanatory model and then the pedagogical idea of
how it was taught in this study.

3.1 Explanatory Model for the Role of Data in
Data-Driven Technologies

As described earlier, studies demonstrated that contextualizing
learning about data and data-driven technologies within personal
perspectives increased personal engagement [8, 73]. Thus, we de-
signed the model from students’ everyday user perspective. Notably,
the explanatory model makes a specific framing in terms of an ed-
ucational reconstruction of computational concepts and does not
primarily aim to draw on specific data or AI concepts from the
discipline as they are often rather abstract [see 26]. In this regard,
the model reconstructs the role of data in data-driven technologies,
offering a lens to understand the role of data in these technolo-
gies and to be integrated into students’ everyday lives. The model
describes both technical aspects of data collection and processing
and underlying purposes of these data practices. It is illustrated in
Figure 1 and briefly described below.
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How is data collected in data-driven technologies? During inter-
actions with data-driven technologies, data about users and the
interactions hold particular significance as they form the basis for
many data-driven features. This data is collected through various
methods, as outlined in several distinctions [56, 70, 71]. For instance,
data can be categorized as follows: provided data that the user ac-
tively creates; observed data gathered through observation and
recording, of which the user is not necessarily aware; derived data
generated by directly processing existing data; inferred data gener-
ated by probability-based processing [70]. Thus, users intentionally
provide data, which we call explicitly collected data. In contrast,
other data is collected through observation, tracking, and data pro-
cessing alongside the interaction, which we call implicitly collected
data.

How is the data processed? Data-driven technologies utilize prac-
tices from data science and ML to process collected data, generating
data models such as ML models or user models, which are created
by user modeling [for overview to user modeling, see 12]. This
paper focuses specifically on data models about users, known in
the literature as user models, digital footprints, digital shadows,
data doubles, or digital doppelgänger [e.g., 9, 51, 86]. These models,
derived from explicitly and implicitly collected data, are usually con-
tinually refined during interactions with data-driven technologies
(e.g., based on user modeling and profiling techniques). Addition-
ally, they may include sensible information, even if not provided by
users themselves [36, 66]. For example, predictive analytics meth-
ods can predict sensitive personal data based on specific predictive
models [66]. The data models can then be used to predict prefer-
ences and future behavior [51, 95]. This is, for instance, especially
in contexts like recommender systems, which use these predictions
for filtering methods. While the explanatory model is designed
from users’ perspectives, the data models about users are crucial
due to their individual implications, such as privacy concerns and
targeting. However, ML models are also interesting to consider due
to potential impacts on interactions, leading to bias and fairness
issues.

For which purposes is the data processed? Data collection and
processing serve various purposes, often driven by commercial
interests. From a technical perspective, data processing aims to
provide different features and generate outputs during interactions
that users may recognize. These are called primary purposes in our
model. However, providers often have additional intentions beyond
the immediate output generation. For instance, data is processed
to predict users’ behaviors for feature adaptation [e.g., 66, 86, 95].
These predictions may be leveraged for targeted advertising or, at
another level, to influence users’ behaviors and emotions [52, 83].
We call them secondary purposes, which are often not apparent to
users, sometimes intentionally obscured or overshadowed by pri-
mary purposes [e.g., 14, 95]. Distinguishing these purposes allows
students to evaluate data practices of data-driven technologies in a
nuanced way, as it often depends on the different purposes.

3.2 Teaching and Learning the Explanatory
Model

Taken again the user-designer continuum discussed earlier (see
Section 2.2), the overall goal of this approach is to support students
in navigating along this continuum from a user to a designer role
of actively shaping digital technologies and develop future tech-
nologies [21, 77, 80, 84]. Consequently, it aims at making abstract
computational concepts about data-driven technologies accessible
and applicable to students’ everyday lives, enabling them to un-
derstand and reflect on such technologies (i.e., becoming informed
as first steps on the continuum). This facilitates competently and
responsibly navigating the digital world, ultimately empowering
them to contribute to shaping the digital world [48, 55, 65, 79].

Thus, the approach teaches students an explanatory model and
enables them to use it as a lens for data-driven technologies. This
study’s intervention for teaching this explanatory model is ori-
ented to context-based learning and the idea of semantic waves
[60]. Context-based learning is well-established in science educa-
tion [7, 34], but also used in computing education, such as imple-
mented in problem-based learning [39, 69]. Accordingly, we use an
authentic and meaningful real-life context to support students in
relating and applying the concepts to everyday life [34]. Therefore,
learning the explanatory model is embedded in an everyday context
of interacting with a data-driven technology, allowing students to
reconstruct the role of data in such situations. To counteract the
potential limitation of acquiring only context-specific knowledge
[see discussion in: 39], the abstract concepts of the explanatory
model (e.g., data models about users) are subsequently introduced
and applied to the context through cyclical processes of decontextu-
alizing and recontextualizing. This aligns with the idea of semantic
waves, which describes transitions between levels of semantic den-
sity (i.e., condensation or complexity of knowledge) and semantic
gravity (i.e., relation to a context) [60]. For example, this concerns
transitioning from explaining an abstract concepts, moving on to
a concrete real-world example, and then returning to the abstract
concepts (see for more details: [60, 89]). In doing so, students’ ev-
eryday experiences are addressed to support students in relating
the explanatory model to their everyday lives.

4 METHOD
This section outlines the procedure, participant details, intervention,
instrument for data collection, and subsequent data analysis.

4.1 Procedure
The ethics review board of the corresponding author’s institution
granted approval for this study, which is part of a broader design-
based research project on developing the data awareness framework
[see 45, 46]. This study examines how learning the explanatory
model supports students in relating it to their everyday lives and
fosters their empowerment in navigating the digital world.

Given that students encounter data-driven technologies in their
everyday lives from an early age, our research project focuses on
secondary school students in grades 6 to 10 (12 to 16 years old). We
have developed two interventions for computing education in sec-
ondary schools, which mostly differ in the chosen context: one for
grades 6 and 7 and another for grades 8 to 10. These interventions
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Figure 1: The explanatory model that provides one possible lens on the role of data in data-driven technologies [see also 45].

serve as a basis for evaluating the explanatory model approach. Our
evaluation of the approach is conducted through a pre-post-test
design, with a questionnaire as the measurement instrument (see
details in Section 4.5). This instrument was developed as part of
the broader research project, including multiple rounds of piloting
and evaluation on a broader sample of students. Its development
is subject to another article that we are preparing, but we briefly
summarized the results of the instrument evaluation in Section 4.5.2.
The study presented here focuses on the intervention for grades
8 to 10 (outlined in Section 4.3) and involves 93 students. Figure 2
provides an overview of this design.

The sample selection was based on recruiting teachers from col-
laborations in prior projects and teacher training courses given by
one of the authors. One of the authors introduced the teachers to
the study, questionnaire, and intervention. After obtaining written
informed consent from the students and their legal guardians, teach-
ers introduced the questionnaire during their computing classes,
where students completed it using a digital survey tool. For students
unfamiliar with terms like data, teachers were permitted to explain
it briefly to aid comprehension of the questionnaire items. The
teachers conducted the intervention in their classes, with clarifica-
tion on the intervention and materials provided in meetings before
and during the study. After the intervention, students completed
the questionnaire again. The intervention and surveys took place
during regular computing classes and lasted 6 to 8 lessons of 45
minutes each, typically over 3-4 weeks.

Figure 2: Overview of the study design. This paper evaluates
the explanatory model approach according to the interven-
tion for grades 8 to 10.

4.2 Participants
The study presented here involved 93 students (67 males, 24 females,
2 non-binary) in grades 9 and 10 across Germany and Switzerland.
These students came from 6 classes at 4 different secondary schools
in rural and urban areas and from different types of schools (dif-
fering in general student achievement levels). Table 1 provides a
respective overview of the classes. Many of these students have
already received computing education in school, as computing was
introduced as a compulsory subject in the official curriculum of the
participating schools a few years ago. Consequently, many students
probably had some prior experience with data and AI concepts.

Table 1: Sample description

Class Participants Country School Grade

A 10 Germany A 10
B 15 Germany A 10
C 11 Germany B 10
D 18 Germany C 10
E 20 Germany C 9
F 19 Switzerland D 9

4.3 Intervention: Role of Data in Services with
Recommender Systems

The intervention adopts the explanatory model approach. It uses
an exemplary data-driven digital artifact from students’ everyday
lives to support the relation to everyday experiences. Our choice
was movie streaming services using recommender systems. Details
of the intervention are described below and summarized in Figure
3.

The intervention consists of four phases. In the first phase, the
example of a movie streaming service is used as a starting point,
raising the question of how such a system generates personalized
recommendations. This introduces the core idea of recommender
systems. Working in small groups, students develop initial ideas
for generating such recommendations and discuss which personal
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Figure 3: Overview of the intervention used in this study, implementing the approach described in Section 3.2.

data could inform deciding which movies to recommend. Building
on this activity, the idea of data collection is decontextualized, and
the concepts of explicit and implicit data collection are introduced.
Students then recontextualize these concepts by mapping their
ideas to these types of data collection.

The second part delves deeper into the black box of movie recom-
mender systems. Students are given a prepared Jupyter notebook,
offering an opportunity to look under the hood. This Jupyter note-
book contains a Python module that we have developed, which
generates personalized movie recommendations for students based
on rating data from real people. Through a step-by-step exploration,
students uncover details of data collection (e.g., collecting movie
ratings and tracking user behavior) and the subsequent data pro-
cessing for generating personalized movie recommendations. This
includes an introduction to k-nearest-neighbor as an example of
an ML method, enlightening students on how ML models could
be developed based on user data. By decontextualizing the idea of
collaborative filtering, the concept of data models about users is
introduced. Students then recontextualize this concept within the
given context and explain data models about users and their role
in predicting user interests based on similar user ratings.

The third part deals with secondary data processing purposes of
recommender systems. It begins decontextualized with an introduc-
tion to the concepts of primary and secondary purposes. Students
recontextualize these concepts by using them to summarize the
previous part (focus on primary purposes) and brainstorm potential
secondary purposes. Through a panel discussion, students engage
in dialogue regarding the hypothetical secondary purposes of a per-
sonalized paywall based on predictions of users’ movie preferences.
From diverse viewpoints, students deliberate on this idea and reflect
on the responsible use of such technologies. They also reflect on
their own role within these interaction systems and explore vari-
ous individual and societal implications of streaming services (e.g.,
regarding filter bubbles). These evaluations consider the different
types of purposes.

During the fourth part, students engage with the role of data in
data-driven technologies from their everyday lives that use recom-
mender systems. Working in groups, they select such an artifact
and explore it according to the concepts of the explanatory model.
This process allows students to apply the concepts to other every-
day examples, supporting experiences in reconstructing the role of
data in data-driven technologies and reflecting on the interactions.
For instance, this part may involve examining specific apps the stu-
dents use. After analyzing and evaluating the role of data in these
examples, students discuss possible advantages and disadvantages.
Thus, critical reflections are encouraged.

4.4 Hypothesized Model for this Study
As previously outlined, this study examines students’ understand-
ing, motivation, intention, and empowered behavior. As these four
components are interrelated, we use a structural equation modeling
approach (detailed in Sections 4.5 and 4.6). Accordingly, the study
builds on a hypothesized model encompassing four components
and their assumed relations, forming the basis for the questionnaire
(see Section 4.5). This theoretical model is shown in Figure 4 and
elucidated below.

The four components are defined as following:

• Understanding of the role of data in data-driven technolo-
gies according to the explanatory model,

• Motivation to engage with the role of data in data-driven
technologies in everyday life,

• (Implementation) Intention to engage with the role of data
in data-driven technologies in everyday life, and

• Empowered Behavior in terms of being empowered to
make sense of inner workings of data-driven technologies
from everyday life, instead of being a passive consumer.

Between these four components, we assume several relations.
Based on the discussions about motivation and intention (see Sec-
tion 2.3), the motivation component indicates whether students
have chosen the goal of engaging with the role of data in everyday
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Figure 4: The hypothesized model with four components as covered in the questionnaire.

data-driven technologies. Additionally, implementation intention
indicates whether students plan to realize this goal of engaging with
the role of data. Given the research on motivation and intention dis-
cussed earlier, motivation can lead to implementation intention (see
Section 2.3). Taken together, motivation and intention indicate the
extent to which students want to engage with the inner workings
of data-driven technologies (i.e., to use the concepts in everyday
life). Subsequently, the intention may translate to engaging with
the inner workings of data-driven technologies in everyday life
(see Rubicon model in Section 2.3), that is, being empowered to
become more informed about these technologies. Hence, we as-
sume a predictive chain of relations from motivation to intention to
empowered behavior. Furthermore, as discussed regarding resigna-
tion and powerlessness (see Section 2.4), understanding could affect
the motivation and intention to engage with the inner workings
of data-driven technologies. Additionally, it is hypothesized that
this understanding supports students in becoming informed and
competent users in interactions with such technologies, thereby
influencing empowered behavior.

4.5 Instrument for the Data Collection
Based on the theoretical model, we developed a questionnaire re-
flecting measurement models for the respective components. The
questionnaire was used as both pre- and post-test. It consists of
four parts covering the components of the hypothesized model (see
Figure 4). Additionally, it asks for an ID and demographic informa-
tion (grade, school, gender). Students completed the questionnaire
using a digital tool, which begins with personal information and
then presents the four parts and their items in a randomized order
to mitigate a question order bias. In this section, we briefly describe
the questionnaire and the results of its evaluation (Table 2 shows
the final items)2.

4.5.1 Description of the Questionnaire.

Context in the questionnaire. The questionnaire captures a situa-
tion that students are familiar with from everyday life to examine
whether they could relate the concepts to everyday life. We chose

2The full questionnaire is published as external supplementary material: https://doi.
org/10.5281/zenodo.11609812

"using apps" as the context due to the students’ widespread use
of apps and the prevalence of data-driven functionalities (e.g., in
social media apps). By contextualizing the questionnaire around
interactions with apps, it eliminates the need for more concrete
perceptions of AI and mitigates effects of misconceptions about AI
[e.g., 62]. The understanding part refers to the situation of installing
a new social media app, including a description of a fictional app
with a news feed (i.e., it uses a recommender system). The motiva-
tional, intentional, and behavioral parts are more broadly framed
around using apps and engaging with the role of data in them.

Part 1. Understanding the explanatory model. The explanatory
model described before proposes a way to characterize the role of
data in data-driven technologies, whose aspects are meant to be
computational concepts. This study involves examining students’
understanding according to this explanatory model. This part of
the questionnaire, therefore, includes items about three themes:
(a) data collection, (b) generation and use of data models, and (c)
data processing purposes. As far as we know, there is no measure-
ment for this perspective on data-driven technologies. Thus, we
developed items accordingly. Initially, a subset of the authors de-
veloped a set of items drawing from the explanatory model, prior
research, and literature on data-driven technologies. The initial
draft included open-ended and true-false rating items. An iterative
process of reviews and discussions with different computing edu-
cation researchers led to several modifications, increasing items’
content validity. Additionally, we have revised some items dur-
ing the piloting process to improve their comprehensibility (see
piloting process in Section 4.5.2). The items used here included
two open-ended items regarding understanding of data collection
and data processing purposes. These stem from a previous study,
where they had shown to be useful and usable from grade 6 on [see
45]. Additionally, it included 18 items regarding data models that
students should rate as true or false.

Part 2. Motivation and intention to engage with the role of data.
The motivation and intention items were mostly adapted from ex-
isting validated scales. The motivation items are rated on a 7-point
Likert scale ranging from "strongly disagree" (1) to "strongly agree"
(7). We incorporated self-efficacy, intrinsic value, importance, and
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cost based on the expectancy-value theory of motivation. Intrinsic
value is similar to the construct of intrinsic motivation because both
refer to engaging in an activity driven by interest and enjoyment
[92]. Therefore, we used a validated scale for intrinsic motivation
consisting of seven items to assess the intrinsic value [17] (see
description and validation in: [59, 61]). The items were adapted
according to the previously described activity, similar to what has
been done for other studies [see 17]. The perceived importance was
also covered using a validated scale with six items [17] (see also:
[59, 61]). The items were adapted to the activity addressed in the
questionnaire, taking into account other exemplary adoptions [see
17]. To measure a perceived cost as part of the value component,
we adapted a scale developed by Flake et al. [30]. As we focused on
activity, we chose the task effort cost subscale and adapted this to
the activity mentioned in our questionnaire. This subscale has five
items. As far as we know, there has not been an appropriate self-
efficacy scale related to whether people believe they can understand
the concepts of our explanatory model for data-driven technologies.
Therefore, following Bandura’s recommendations for developing
self-efficacy scales [4], we developed six items that cover different
aspects of the explanatory model. Similarly, due to the specific ac-
tivity, we designed our own items for the implementation intention
subscale. Such items can be "if-then" statements rated according to
one’s commitment [2, 35]. These items can indicate that students
have these behavioral intentions. In literature, using two or three
items related to specific activities is suggested to predict intentions
[29]. Hence, we developed two items rated on a 7-point Likert scale
ranging from "I will certainly not do that" (1) to "I will certainly do
that" (7).

Part 3. Behavior in interactions with data-driven technologies.
Given the difficulty of observing and assessing students’ every-
day behavior, we included this part to gain insights into students’
perspectives on their interaction behavior and whether these indi-
cate a sense of empowerment. As scant research operationalizes
"empowerment" for quantitative measurements, we decided to in-
clude an open-ended item to explore whether students’ answers
reflect informed and empowered behavior or rather powerlessness.
Recognizing the potential for social desirability bias when asking
about their behavior (see privacy paradox: [5, 6]), we contextualized
the open-ended item as offering advice to a friend on engaging with
the role of data in apps. The answers could reveal their views on
such an interaction behavior.

4.5.2 Overview of the Prior Instrument Evaluation. The previously
described instrument was developed in our broader research project.
The prior piloting process and evaluation of the instrument are
summarized below.

Piloting. We conducted multiple rounds of piloting with teachers
and students to improve the questionnaire’s comprehensibility for
young students. This process involved individual thinking aloud
with a 6th-grade student, thinking aloud with a teacher, and testing
the design with a whole 6th-grade class. In particular, we observed
some difficulties in item formulations, resulting in some improve-
ments and removing one item from the motivation scale. Due to
this process and the further analysis of the instrument (see descrip-
tion below), we observed that many young students struggled with

negations of items, resulting in avoidance of negated items in the
final questionnaire.

Prior instrument evaluation. In our research project, we collected
data from 398 secondary school students in grades 6 to 10 across two
European countries (210 males, 177 females, 11 non-binary), includ-
ing the 93 students who participated in the study presented here.
These 398 students are from 25 classes from 17 different schools.
Based on these data, we evaluated the instrument, following a
mixed-methods approach, including content analysis, Rasch model-
ing, and a typical structural equation modeling approach [32]. The
results of this analysis is briefly summarized below.

Firstly, the qualitative data were analyzed following a thematic
qualitative content analysis [53, pp. 69-88]. We developed separate
code systems for each of the three open-ended items presented in
Table 3. Data sessions and inter-rater tests on randomly chosen
material were used to ensure the coding was valid and reliable. The
agreement ranged from substantial to almost perfect between the
different code systems.

Secondly, the rating items of the understanding part were eval-
uated with a Rasch modeling approach, as these were assessment
items that we believed to capture a unidimensional construct. Based
on the item format, we used a dichotomous Rasch model; model
fit was examined using Andersen’s LR-test on total item-set level
and the Wald-test on single item level. After excluding some items
based on the Wald-test results, the LR-Test provided for the final
scale a p-value of 0.50, indicating a good fit. The outfit values of
the items are on average 1.02, and the infit values 0.98, indicating
that the resulting scale is usable for assessment.

Thirdly, we used confirmatory factor analysis to test the mea-
surement models of motivation and intention with a five-factor
model. After excluding two items with small factor loadings, the
final five-factor model showed a good fit according to fit criteria sug-
gested by Hu and Bentler [47] (𝜒2 (179) = 272.49, 𝑝 < 0.000,𝐶𝐹𝐼 =
0.971,𝑇𝐿𝐼 = 0.965, 𝑅𝑀𝑆𝐸𝐴 = 0.042, 𝑆𝑅𝑀𝑅 = 0.047). The standard-
ized factor loadings range from 0.62 to 0.91. The implementation
intention subscale has acceptable reliability (𝛼 = 0.79), while the
other subscales have (very) good reliabilities (𝛼 between 0.83 and
0.91).

Fourthly, we tested the structural equation model (SEM), which
showed a good model fit (𝜒2 (515) = 681.589, 𝑝 < 0.000,𝐶𝐹𝐼 =

0.963,𝑇𝐿𝐼 = 0.959, 𝑅𝑀𝑆𝐸𝐴 = 0.031, 𝑆𝑅𝑀𝑅 = 0.054) [see fit criteria:
47]. The SEM is shown in Figure 5.

Using expert interviews and the SEM analysis, the prior eval-
uation of the instrument suggested adequate face and construct
validity. Overall, the prior evaluation showed that the instrument
is a sufficient measurement for the study presented in this paper.

4.6 Data Analysis for this Study
According to the research questions, this study’s data analysis fo-
cused on evaluating the effects on students’ understanding, moti-
vations, intentions, and empowered behavior.

The analysis of the qualitative data from the questionnaire fol-
lows a thematic qualitative content analysis [53, pp. 69-88]. For each
of the three open-ended items, we developed separate code systems.
The codes for the data collection and processing items (see part 1
of the questionnaire) were deductively defined, while those for the
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Table 2: The final set of the questionnaire items (translated from German into English)

Subscale Items

Understanding data
collection

SocialNet would collect and use data about you. Please note what data SocialNet is likely to collect about you.

Understanding data
processing purposes

Please note for what purposes SocialNet might use the data about you.

Understanding data
models

SocialNet creates digital doppelgänger of its users. Rate the following statements about digital doppelgänger as
true or false.

• When I use SocialNet, my digital doppelgänger becomes more and more precise.
• A digital doppelgänger describes a person in its entirely.
• The provider of SocialNet can use my digital doppelgänger to predict what I am likely to do on SocialNet
in the future.

• The provider of SocialNet can also use digital doppelgängers beyond SocialNet.
• A digital doppelgänger contains only true information about the user.
• In a social network like SocialNet, my digital doppelgänger consists of my profile page and my posts.
• My digital doppelgänger influences what SocialNet displays to other users.
• Social networks can influence user behavior.
• Letting a social network collect data about myself is my own decision, which does not concern other
people.

• The way I use a social network can affect other people.
(Note. This includes both true and false statements.)

Intrinsic value Decide how much you agree with these statements: When I am engaging with the data collection and processing
of an app ... I am enjoying it very much. / I find it is fun to do. / I would describe it as very interesting. / I think it
is quite enjoyable.

Importance Decide how much you agree with these statements: When I am engaging with the data collection and processing
of an app ... I put a lot of effort into it. / I try very hard to understand it. / I try very hard to do it. / it is important
to me to understand it.

Cost Decide how much you agree with these statements: Engaging with the data collection and processing of an app
... demands too much of my time. / requires me to spent too much energy. / takes up too much time. / is too
much work. / requires too much effort.

Self-efficacy Decide how much you agree with these statements: When I am engaging with the data collection and processing
of an app, I would be sure to find out ... what data I create in the app. / what data the app collects about me
incidentally while I am using it. / what data is required to use the app’s features. / for which other purposes the
app processes data about me. / what choices I have to influence the data collection and processing. / how the app
might influence me, for example, by selecting the posts I see.

Implementation
intention

Decide how much you agree with the following statements:
• When a new app is released soon, I will think about what data this app would collect and process about
me before installing it.

• The next time I use an app on my smartphone, I will look at what data the app collects about me and what
it processes it for.

Empowered
behavior

Imagine a friend of you gets a new smartphone and is going to install apps. Which advice would you give about
whether and how to engage with the role of data in such apps?

behavior item (see part 3 of the questionnaire) were inductively
generated. Coding manuals for the deductive code categories were
derived from the explanatory model (i.e., covering the types of data
collection and the kinds of data processing purposes defined in
Section 3.1) and refined during data sessions. The inductive code
categories for the behavior item were generated by exploring the
data and discussing them in data sessions. This analysis resulted
in four main code categories described below in more detail (see

Section 5.3). Table 3 presents the final code systems and respective
examples.

One of the authors coded all qualitative data, while a second
coder worked on about 20% of the data randomly chosen for each
of the three items. The inter-coder reliability was calculated using
the Brennan and Prediger Kappa [11]. The strength of agreement
was almost perfect for the data collection item (𝜅 = 0.83), almost
perfect for the data processing item (𝜅 = 0.81), and substantial
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Figure 5: Results from the SEM analysis according to the hypothesized model. (Significant paths are marked with ∗∗ for 𝛼 < 0.01,
and ∗∗∗ for 𝛼 < 0.001.)

for the behavior item (𝜅 = 0.72) [54]. The coded data were also
quantified and further analyzed using quantitative methods.

As the items and scale values are ordinal scaled but not all nor-
mally distributed according to the Shapiro-Wilk test, we used the
Wilcoxon signed-rank test to examine pre-post differences (two-
sided with 𝛼 = 0.05). This analysis examined changes in students’
understanding, motivations, intentions, and empowered behavior.
The effect size 𝑟 of results were interpreted as small between 0.1
and 0.3, medium between 0.3 and 0.5, and large above 0.5 [20].

5 RESULTS
The results are presented according to the research questions.

5.1 Students’ Understanding of the Role of Data
The data from the open-ended items about the data collection and
the data processing purposes were coded deductively according to
the aspects of the explanatory model. Table 3 provides an overview
of the codes for these items and the respective frequencies. The data
indicate that prior to the intervention, only some students already
had a nuanced perception of the data collection. However, most of
the students (80.7%) had no understanding of the data collection or
could only describe the more obvious explicitly collected data (e.g.,
"my name and email address"). After the intervention, nearly the
half of the students could describe examples of implicitly collected
data (e.g., "it collects how often I am online and what I click there")
or mentioned both types (43%). According to the prior conceptual-
ization of these types of data collection (see Section 3.1), the four
codes are hierarchically ordered and thus ordinal scaled. The pre-
post difference is significant with large effect size according to the
Wilcoxon signed-rank test (𝑊 = 154.5, 𝑝 = 0.00005, 𝑟 = 0.614). This
indicates that the students developed a more nuanced understand-
ing of the data collection of data-driven technologies.

Regarding the data processing purposes, the secondary purposes
are mostly mentioned rather superficially (e.g., "personalized adver-
tising"), while the primary purposes require a deeper understanding

of the inner workings of data-driven technologies. As an example
for a primary purpose, a student mentioned "deriving data about
interests that can be used to filter the posts in my news feed." In
the pre-test, most of the students had no ideas about the purposes
(22.6%) or only mentioned superficial ideas about the secondary pur-
poses (41.9%), while about a third of them could describe primary
purposes or both types (31.2%), indicating a deeper understanding
about technical aspects of the data practices. After the interven-
tion, many students could describe primary purposes or both types
(65.6%). Since this data are also ordinal scaled, we used theWilcoxon
signed-rank test. This provides that the pre-post differences are
significant with medium effect size (𝑊 = 508, 𝑝 = 0.0013, 𝑟 = 0.412).
This indicates that the students developed a better understanding
of the purposes for which the data are processed in data-driven
technologies. In particular, the results suggest that many students
developed a better understanding of the inner data practices.

Based on the Rasch-scale part for understanding data models
in data-driven technologies, the scale values can be calculated as
sums so that the range of possible scores is up to 10. In the pre-test,
students’ scores are on average 6.09 (𝑠𝑑 = 2.29,𝑚𝑑 = 6), while
they are 6.98 (𝑠𝑑 = 2.78,𝑚𝑑 = 7) in the post-test. According to the
Wilcoxon signed-rank test, this pre-post difference is significant
with medium effect size (𝑊 = 890, 𝑝 = 0.0018, 𝑟 = 0.356). This
indicates that many students developed a better understanding of
the data models about users, how they are generated, and which
role they play in interactions with data-driven technologies.

Taken together, the results for the three understanding parts
suggest that the students developed a more nuanced understanding
of the role of data in data-driven technologies. As the exemplary
contexts from the intervention and the questionnaire are different,
these results indicate that the students developed an understanding
of the concepts from the explanatory model.
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Table 3: Frequencies of codes in the qualitative data from the pre-post data (𝑁 = 93)

Code Examples from students Number of
students in
pre-test

Number of
students in
post-test

Data Collection:
(0) no answers - 13 (14.0%) 3 (3.2%)
(1) explicit data collection my name; my text messages to friends 62 (66.7%) 50 (53.8%)
(2) implicit data collection online status; posts I have viewed 4 (4.3%) 5 (5.4%)
(3) both types of data collection (examples for both types) 14 (15.1%) 35 (37.6%)

Data Processing:
(0) no answers - 21 (22.6%) 18 (19.4%)
(1) secondary purposes personalized advertising 39 (41.9%) 14 (15.1%)
(2) primary purposes display posts in my news feed; check the age restriction 18 (19.4%) 32 (34.4%)
(3) both kinds of purposes (examples for both kinds) 15 (16.1%) 29 (31.2%)

Empowered Behavior:
(0) no ideas or resignation you can’t do anything 23 (24.7%) 20 (21.5%)
(1) ideas when to shift the focus if you have to register for an app with a profile; if you are asked

for personal information about yourself
30 (32.3%) 16 (17.2%)

(2) ideas on what to focus look at what data the app wants to track from you; check
whether the app is trustworthy

23 (24.7%) 31 (33.3%)

(3) ideas what could be done hide your email address (there are providers for this); try to give
as little information about yourself as possible; block trackers

17 (18.3%) 26 (28.0%)

5.2 Students’ Motivation and Intention towards
Engaging with the Role of Data

The students were surveyed about their motivations and intentions
to engage with the role of data in everyday data-driven technolo-
gies. Figure 6 provides an overview of the scale statistics for the
motivational and intentional factors.

Regarding the intention to engage with the role of data in ev-
eryday apps, students rated the items with an average of 2.82
(𝑠𝑑 = 1.39,𝑚𝑑 = 3) in the pre-test and with 3.34 (𝑠𝑑 = 1.8,𝑚𝑑 =

3.5) in the post-test. The pre-post difference is significant with
medium effect size according to the Wilcoxon signed-rank test
(𝑊 = 799.5, 𝑝 = 0.0023, 𝑟 = 0.356). This indicates that the interven-
tion encourages many students to commit to the plan of engaging
with the role of data in everyday interactions with data-driven tech-
nologies. Thus, more students rated such an engagement as more
relevant after participating in the intervention. The scale values
of the motivational factors are a bit better in the post-test, but the
differences are not significant. Students’ motivation for this engage-
ment is moderate to low, especially regarding the value factors of
motivation.

Moreover, according to the SEM (see Figure 5), the self-efficacy
component of motivation is affected by understanding the concepts
(𝛽 = 0.380, 𝑝 < 0.000), while the effect of understanding on the
value component is not significant (𝛽 = 0.010, 𝑝 = 0.899). Regard-
ing the relation between motivation and intention, only the value
component significantly affects students’ intentions (𝛽 = 0.592, 𝑝 <

0.000).

Figure 6: Boxplots for the motivational and intentional fac-
tors grouped by pre- and post-test

5.3 Students’ Behavior of Engaging with the
Role of Data

The students were asked when and how to engage with the role
of data in data-driven technologies in everyday life. The inductive
qualitative analysis of this item focused on identifying different
levels of being informed and empowered. This resulted in four code
categories (see Table 3).

The first code is that students had no ideas about the question
or stated to be resigned and having a state of surrender. The sec-
ond code was assigned when students mentioned having ideas for
reasons when to shift one’s focus away from the immediate goal of
why one is interacting with a digital artifact, that is, situations in
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which they value engaging with the role of data (e.g., "if you are
asked about personal information"). The third code was given when
students described ideas of with what to engage (i.e., where to focus
on) to get information about the inner workings and data practices
(e.g., "look at what data the app wants to track from you"). The
last code refers to answers with ideas for possible actions in such
interactions with data-driven technologies (e.g., "block trackers").

Regarding further analysis, students were assigned to one of
these code categories as a score. They got the highest code contained
in the answer (i.e., the answer can also contain segments with lower
codes but no higher ones). Thus, scores for empowered behavior
are given, which are ordinal scaled. Table 3 reports the order of the
codes, code examples, and frequencies.

The scores are on average 1.37 (𝑠𝑑 = 1.05,𝑚𝑑 = 1) in the pre-test,
and 1.68 (𝑠𝑑 = 1.1,𝑚𝑑 = 2) after the intervention. The pre-post
difference is significant with moderate effect size according to the
Wilcoxon signed-rank test (𝑊 = 488, 𝑝 = 0.025, 𝑟 = 0.306). These
differences are visualized in Figure 7, showing the transitions of
students from pre-test to post-test according to the scores. It can be
seen that many students made improvements towards the post-test,
even if a few students were assigned a lower score in the post-test
than in the pre-test. This indicates that many students developed
more ideas for when and where to focus their attention in order to
understand the role of data and what possible actions could be (as
an alternative to passive use). These results reflect ideas of using
the explanatory model as a lens to become informed.

According to the SEM (see Figure 5), the intention to engage
with the role of data in data-driven technologies significantly affects
these empowered behavior scores (𝛽 = 0.164, 𝑝 = 0.003). In addition,
understanding the explanatory model appears to affect empowered
behavior significantly (𝛽 = 0.265, 𝑝 = 0.001).

Figure 7: Students’ transitions regarding empowered behav-
ior from pre-test (top level) to post-test (bottom level)

6 DISCUSSION
In this section, we discuss the findings structured according to the
research questions.

6.1 Development of Understanding of
Data-Driven Technologies (RQ1)

The results showed an improved understanding of data collection,
data processing purposes, and data models in data-driven technolo-
gies after the intervention. This suggests that students understood
the concepts and could apply them to another everyday example.

Introducing and applying the explanatory model may mitigate po-
tential challenges of acquiring only context-specific knowledge
when learning about concepts in context-based approaches [see
39, 69]. Thus, this approach appears to enhance students’ compre-
hension of the role of data in everyday data-driven technologies, an
areawhere students often lack understanding [e.g., 13, 36, 71, 72, 84].
While students could apply the concepts to the everyday context of
the questionnaire, the explanatory model is likely to be accessible
and applicable to students. Thus, it appears to aid in relating com-
putational concepts to their everyday experiences, addressing the
previously discussed challenge of such relations [e.g., 10, 33, 88].

6.2 Development of Motivations and Intentions
(RQ2)

The results revealed that many students did not perceive much
value in engaging with the role of data in data-driven technologies
(i.e., perceiving it as useless or unnecessary) despite showing rela-
tively high self-efficacy scores. This reluctance does not appear to
stem primarily from a perceived lack of competence, contrary to ex-
planations attributing this phenomenon to knowledge gaps [23, 44].
The struggle to grasp a value in engaging with the inner workings
of such technologies may contribute to resignations [e.g., 23, 78].
Additionally, the intervention did not increase students’ motivation.
As the SEM showed no significant relationship between understand-
ing and perceived value, conceptual understanding alone does not
necessarily encourage students to see a value to shift the focus
on the inner workings of data-driven technologies. Similar obser-
vations have been made in other studies, as learning about data
practices, ML concepts, and potential impacts neither resolved feel-
ings of powerlessness nor encouraged them to reflect critically on
data-driven practices in everyday life or to change their opinions
about their behavior [8, 40, 88]. This highlights the importance of
considering students’ motivations when examining the effects of
computing education on students’ everyday lives (e.g., relating con-
cepts to everyday life) and encouraging them to perceive a personal
value of using the concepts in everyday life.

In contrast to motivation, students’ intentions to engage with
the role of data the next time they use apps increased significantly.
Since research provided evidence that implementation intentions
often precede behavior initiation [35, 90], the results indicate that
many students commit to engaging with the role of data in everyday
interactions with such technologies. Thus, learning the explanatory
model appears to encourage students to apply the model to every-
day technologies and think about their interaction behavior with
such technologies. This indicates that providing students with the
explanatory model may reduce feelings of helplessness and pow-
erlessness [see 18, 40, 43], suggesting a potential transition from
passive roles to more informed interaction behaviors. Moreover,
this underscores that students could relate the explanatory model
to their everyday lives.

6.3 Development of Empowered Behavior (RQ3)
This study also explored whether learning the explanatory model
could help students become informed and empowered in their every-
day interactions with data-driven technologies. Given the limited

338



ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Lukas Höper, Carsten Schulte, & Andreas Mühling

research on systematically measuring empowerment, we incorpo-
rated an open-ended item to examine a sense of empowerment in
students’ perspectives on their behavior. We found four code cate-
gories, aligning with the goals of the explanatory model approach,
which intends to support students’ understanding of data-driven
technologies and encourage reflections on their interactions. From
this point of view, these codes could be interpreted as follows:

(0) Feeling powerless regarding the data-driven technologies
and being in a passive user role

(1) Having ideas in which situations to use the explanatory
model as a lens on data-driven technologies

(2) Having ideas of how to apply the explanatory model to
understand data-driven technologies

(3) Evaluating specific data-driven technologies and making
informed decisions for one’s behavior

The question, however, is how empowerment relates to these
aspects. Empowerment lacks a common definition in literature, but
for instance, Freire [31] suggests empowerment involves address-
ing power imbalances in society to support students to understand,
act, and transform the world, fostering participation in the world.
Concerning computing, empowerment often entails reconstructing,
understanding, and reflecting on digital technologies, alongside
the capability to design digital artifacts, thereby shaping the dig-
ital world [16, 21, 49, 65, 87]. This could be interpreted with the
previously discussed user-designer continuum [28, 77, 79]. In this
vein, computing education aims to support transitions from passive
user roles to informed and active designer roles shaping the digital
world [22, 49, 80]. Taking this discussion and the findings together,
students’ answers revealed stages of such an empowerment at the
beginning of this continuum, as illustrated in Figure 8.

Figure 8: Findings reveal stages of becoming informed and
empowered in navigating the digital world.

The results indicate decreasing powerlessness and an increase
in having ideas of when and where to focus to make sense of and
reflect on the role of data in data-driven technologies and thus
becoming informed about such technologies. Thus, many students
seem to progress toward empowerment, moving away from passive
consumer stances.

This transition from powerlessness to such a form of "everyday
empowerment" suggests a transformation of students’ perspective
on their interactions with data-driven technologies. This may result
from learning the explanatory model, given the relation between
understanding the explanatory model and this behavior compo-
nent. Notably, students were not instructed on specific actions or

behaviors in such interactions. Due to the essential role of data in
data-driven technologies, peoples’ stances and mindsets on the role
of data can influence their readiness to engage with the inner work-
ings of these technologies. As discussed in Section 2.4, research
shows that people develop resignation and learned helplessness and
feel powerless concerning data-driven practices. Moreover, learning
about data-driven technologies does not necessarily help students
to relate their learning to everyday life and detach themselves from
such stances [see 8, 37, 40, 88]. Thus, it is challenging to support
them in using their knowledge, engaging with these technologies,
and reflecting on their interactions, that is, to become informed
and empowered users rather than passive consumers. In this light,
the study presented here provides interesting insights as learning
the explanatory model appears to help students relate it to every-
day life and become more empowered instead of passively using
data-driven technologies in everyday life.

Future research could delve deeper into this progression of em-
powerment and explore the subsequent steps after being informed
about the technologies and making decisions about one’s behavior.
For instance, informed and reflective views may open avenues for
(re-) imagining future technological developments or motivate a
shift to a designer role to create digital artifacts.

7 LIMITATIONS
The measurement of empowered behavior relies solely on a single
open-ended item. Thus, the depth of findings about students’ em-
powerment is limited. Nevertheless, the item allowed us to explore
students’ views on interacting with data-driven technologies and
examine a sense of empowerment. The analysis revealed aspects
that could be interpreted as incremental steps along a continuum
between powerlessness and being informed and empowered. While
this provides valuable insights into how understanding computa-
tional concepts could support students’ empowerment when navi-
gating the digital world, further research is needed to validate this
continuum and further develop the measurement accordingly.

Additionally, the sample was a convenience sample of moderate
size, geographically limited to specific regions. Although students
were randomly selected through the invitation of teachers to partici-
pate with their classes, potential sample selection bias might persist,
affecting the generalization of findings. However, the study was
conducted in natural school settings, supporting ecological validity,
and included diverse types of schools from rural and urban regions
to ensure a more heterogeneous participant pool. Nonetheless, it is
worth noting that attitudes and emotions towards data practices,
such as resignation and powerlessness, can vary across cultures
[44].

The study design focused on evaluating the presented approach
as implemented in the intervention. Thus, the study did not involve
a control group, precluding direct comparisons with alternative
approaches. Therefore, the findings did not allow us to compare its
effectiveness to other approaches. However, the study yielded valu-
able insights about the impact of learning the explanatory model,
particularly in enhancing understanding of data-driven technolo-
gies and relating its concepts to everyday life.
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8 CONCLUSIONS AND IMPLICATIONS
This paper addresses the challenge that students are struggling
to relate computational concepts learned in class to their every-
day lives and develop stances of resignation and powerlessness
regarding the role of data in data-driven technologies. Targeting
the need for respective approaches to K-12 computing education,
we presented an approach called learning explanatory models. This
approach teaches students a model about the role of data in data-
driven technologies, aiming to support them in relating this to
their everyday lives by providing a lens for reconstructing and
evaluating data-driven technologies in everyday life. In doing so,
we aim that this approach supports students to become informed
and empowered instead of being resigned, powerless, and passive
consumers, that is, to support their empowerment in navigating the
digital world. We presented a study that evaluates this approach.

This study suggests improvements in students’ conceptual un-
derstanding of data-driven technologies. Additionally, it indicates
that learning the explanatory model encourages students to engage
with the inner workings of everyday data-driven technologies and
to reflect on their interactions with such technologies, indicating
that they could relate it to their everyday experiences. Most in-
triguingly, the findings indicate that learning the model supports
students in becoming more informed and empowered in their daily
interactions with such technologies. Previous research suggested
that understanding data-driven technologies does not necessar-
ily mitigate peoples’ feelings of helplessness and powerlessness.
This study demonstrates how to mitigate such preventing attitudes
regarding the special case of data-driven technologies and how
transformations to informed and empowered roles in interactions
with these technologies can be supported.

In addition to this approach and providing a concrete explanatory
model of data-driven technologies, this paper demonstrates a way
to examine students’ understanding of such a model and whether
they can relate this model to their everyday experiences and make
use of it to become more informed and empowered in everyday life.

Moreover, the study revealed a more nuanced understanding of
the stages of empowerment between passive consumer and active
designer roles. This refers to a shift in focus from immediate user
goals to the inner workings of these technologies and transfor-
mation in perspectives, leading to a more informed behavior in
these interactions. It would be fruitful to examine further steps
of this continuum, particularly regarding the transition between
being informed and designing digital artifacts. Nevertheless, this
continuum contributes to the ongoing debate on the potential of
computing education to empower students in navigating a world
shaped by data-driven technologies.
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