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ABSTRACT
Learning is a core part of being a software developer: new tech-
nologies and paradigms are forever being created. It is necessary to
constantly learn just to keep up. However, many people’s intuitions
about human learning and memory are incorrect, such as memo-
rising facts is obsolete with access to the Internet. Further, many
of the strategies that we may have relied upon in school, such as
cramming for an exam, are ineffective. In this article, we present ten
research-derived findings about learning that will enable software
developers to learn, teach, and recruit more effectively.

INTRODUCTION
Learning is necessary for software developers. Change is perpetual:
new technologies are frequently invented, and old technologies are
repeatedly updated. Thus, developers do not learn to program just
once – over the course of their career they will learn many new
programming languages and frameworks.

Just because we learn does not mean we understand how we
learn. One survey in the USA found that the majority of beliefs
about memory were contrary to those of scientific consensus [70]:
people do not intuitively understand how memory and learning
work.

As an example, consider learning styles. Advocates of learning
styles claim that effective instruction matches learners’ preferred
styles – visual learners look, auditory learners listen, and kines-
thetic learners do. A 2020 review found that 89% of people believe
that learners’ preferred styles should dictate instruction, though
researchers have known for several decades that this is inaccu-
rate [50]. While learners have preferred styles, effective instruction
matches the content, not learning styles. A science class should use
graphs to present data rather than verbal descriptions, regardless
of visual or auditory learning styles, just like cooking class should
use hands-on practice rather than reading, whether learners prefer
a kinesthetic style or not [54].

Decades of research into cognitive psychology, education, and
programming education provide strong insights into how we learn.
In the next ten sections, we will give research-backed findings
about learning that apply to software developers and discuss their
practical implications. This information can help with learning by
yourself, teaching junior staff, and recruiting staff.

1 HUMAN MEMORY IS NOT MADE OF BITS
Human memory is central to learning: as Kirschner and Hendrick
[37] put it, “learning means that there has been a change made in
one’s long-term memory.” Software developers are familiar with
the incredible power of computer memory, where we can store
a series of bits and later retrieve that exact series of bits. While
human memory is similar, it is neither as precise nor as reliable.

Due to the biological complexity of human memory, reliability
is a complicated matter. With computer memory we use two fun-
damental operations: read and write. Reading computer memory
does not modify it, and it does not matter how much time passes
between writes and reads. Human long-term memory is not as ster-
ile: human memory seems to have a “read-and-update” operation,
wherein fetching a memory can both strengthen it and modify it – a
process known as reconsolidation [3, 12]. This modification is more
likely on recently formed memories [72]. Because of this potential
for modification, a fact is not in a binary state of either definitively
learned or unknown: it can exist in intermediate states. We can
forget things we previously knew, and knowledge can be unreliable,
especially when recently learned.

Another curious feature of human memory is “spreading ac-
tivation” [4]. Our memories are stored in interconnected neural
pathways. When we try to remember something, we activate a
pathway of neurons to access the targeted information. However,
activation is not contained within one pathway. Some of the ac-
tivation energy spreads to other connected pathways, like heat
radiating from a hot water pipe. This spreading activation leaves
related pathways primed for activation for hours [6].

Spreading activation has a negative implication for memory [4,
61] and a positive implication for problem-solving [58]. Spreading
activation means that related, but imprecise, information can be-
come conflated with the target information, meaning our recall
of information can be unreliable. However, spreading activation
is also associated with insight-based problem-solving, or “ah-ha
moments”. Because pathways stay primed for hours, sometimes
stepping away from a problem to work on a different problem with
its own spreading activation causes two unrelated areas to connect
in the middle. When two previously unrelated areas connect, cre-
ative and unique solutions to problems can arise [71]. This is why
walks, showers or otherwise spending time away from the problem
can help you get unstuck in problem solving.

In summary, human memory does not work by simply storing
and retrieving from a specific location like computer memory. Hu-
man memory is more fragile and more unreliable, but it can also
have great benefits in problem-solving and deep understanding
by connecting knowledge together. We will elaborate further on
this in later sections, especially on retrieving items from memory
(section 2) and strengthening memories (section 5).

2 HUMAN MEMORY IS COMPOSED OF ONE
LIMITED AND ONE UNLIMITED SYSTEM

Human memory has two main components that are relevant to
learning: long-term memory and working memory. Long-term mem-
ory is where information is permanently stored and is functionally
limitless [6]; in that sense it functions somewhat like a computer’s
disk storage. Working memory, in contrast, is used to consciously
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Figure 1: Two ways of presenting the same database schema description with differing extraneous cognitive load. The left-hand
dashed red box contains exactly the same information as the awkward textual description in the right-hand dashed red box.
But if a developer only received one of the two to create an SQL database, they are likely to find the diagram easier than the
text. We say that the text here has a higher extraneous cognitive load.

reason about information to solve problems [7]; it functions like
a CPU’s registers, storing a limited amount of information in real
time to allow access and manipulation.

Working memory is limited, and its capacity is roughly fixed
at birth [7]. While higher working memory capacity is related to
higher general intelligence, working memory capacity is not the
be-all and end-all for performance [40]. Higher capacity enables
faster learning, but our unlimited long-term memory removes limi-
tations on how much we could ultimately learn in total [6]. Expert
programmers may have low or high working memory capacity but
it is the contents of their long-termmemory that make them experts.

As people learn more about a topic, they relate information to-
gether into chunks1. Chunking allows the multiple pieces of infor-
mation to act as one piece of information in working memory [41].
For example, when learning an email address, a familiar domain,
like gmail.com, is treated as one piece of information instead of a
random string of characters, like xvjki.wmt. Thus, the more infor-
mation that is chunked, the larger working memory is function-
ally [74]. Using our computer analogy, our working memory/CPU
registers may only let us store five pointers to chunks in long-term
memory/disk, but there is no limit on the size of the chunks, so the
optimal strategy is to increase the size of the chunks.

When learning new tools or skills, it is important to understand
the cognitive load, or amount of working memory capacity, de-
manded by the task. Cognitive load has two parts [73]: intrinsic
load and extraneous load. Intrinsic load is howmany pieces of infor-
mation or chunks are inherently necessary to achieve the task, and
it cannot be changed except by changing the task. In contrast, extra-
neous cognitive load is unnecessary information that, nevertheless,
is part of performing the task. Presentation format is an example of
how extraneous cognitive load can vary. If you are implementing
a database schema, it is easier to use a diagram with tables and
attributes than a plain English description – the latter has higher
extraneous load because you must mentally transform the descrip-
tion into a schema, whereas the diagram can be mapped directly
(see Figure 1 for an example). Extraneous load is generally higher
for beginners because they cannot distinguish between intrinsic
and extraneous information easily.

When faced with a task that seems beyond a person’s abilities, it
is important to recognize that this can be changed by reorganising

1This is not an informal description: the technical term is actually “chunks”.

the task. Decomposing the problem into smaller pieces that can be
processed and chunked will ultimately allow the person to solve
complex problems. This principle should be applied to your own
practice when facing problems at the edge of or beyond your cur-
rent skills, but it is especially relevant when working with junior
developers and recruits.

3 EXPERTS RECOGNISE, BEGINNERS REASON
One key difference between beginners and experts is that experts
have seen it all before. Research into chess experts has shown
that the primary advantage of experts is that they remember and
recognise the state of the board. This allows them to decide how to
respond more quickly and with less effort [29]. Kahneman [35]2 de-
scribes cognition as being split into “system 1” and “system 2” (thus
proving that it’s not only developers who struggle with naming
things). System 1 is fast and driven by recognition, relying upon
pattern recognition in long-term memory, while system 2 is slower
and focused on reasoning, requiring more processing in working
memory. This is part of a general idea known as dual-process theo-
ries Robins [60].

Expert developers can reason at a higher-level by having mem-
orised (usually implicitly, from experience) common patterns in
program code, which frees up their cognition [11]. One such in-
stance of this is “design patterns” in programming, similar to chunks
from section 2. An expert may immediately recognise that a par-
ticular piece of code is carrying out a sorting algorithm, while a
beginner might read line-by-line to try to understand the workings
of the code without recognising the bigger picture.

A corollary to this is that beginners can become experts by
reading and understanding a lot of code. Experts build up a mental
library of patterns that let them read and write code more easily in
future. Seeing purely-imperative C code may only partially apply
to functional Haskell code, so seeing a variety of programming
paradigms will help further. Overall, this pattern matching is the
reason that reading and working with more code, and more types
of code, will increase proficiency at programming.

2Parts of Kahneman’s book were undermined by psychology’s “replication crisis”,
which affected some of its findings, but not the idea of system 1 and 2.
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Figure 2: The semantic wave for variadic functions

4 UNDERSTANDING A CONCEPT GOES FROM
ABSTRACT TO CONCRETE AND BACK

Research shows that experts deal with concepts in different ways
than beginners. Experts use generic and abstract terms that do
not focus on details and look for underlying concepts, whereas
beginners focus on surface details and have trouble connecting
these details to the bigger picture [20]. These differences affect how
experts reason (as discussed in section 3) but also how they learn.

For example, when explaining a variadic function in Python to
someone new to the concept, experts might say that it is a function
that can take a varying number of arguments. A beginner may
focus on details such as the exact syntax for declaring and calling
the function, and may think that passing one argument is a special
case. An expert may more easily understand or predict the details
from having the concept explained to them.

When you are learning a new concept, you will benefit from
both forms of explanation: abstract features and concrete details
with examples. More specifically, you will benefit from following
the semantic wave, a concept defined by Australian scientist Karl
Maton [45, 77], as illustrated by Figure 2.

Following the semantic wave, you continuously switch between
the abstract definition, and several diverse examples of the concept.
Themore diverse the examples are, the better. Evenwrong examples
are beneficial when compared to correct examples to understand
why they are wrong [42], such as seeing a mutable variable labelled
as non-constant when trying to learn what a constant is. This
process is called unpacking.

With these diverse examples, you can then (re)visit the abstract
definition and construct a deeper understanding of the concept.
Deeper understanding stems from recognizing how multiple de-
tails from the examples connect to the one abstract concept in the
definition, a process which is called repacking.

Programming frequently involves learning about abstract con-
cepts. Faced with an abstract concept to learn, such as functions,
people often reach for concrete instantiations of the concept to
examine [31]. For example, the abs function that returns the abso-
lute value of a number. One challenge is that as concepts get more
abstract (from values to variables/objects to functions/classes to
higher-order functions/metaclasses and eventually category the-
ory), the distance to a concrete example increases. The saving grace
is that as we learn abstract concepts, they become more concrete
to us [66, 67]. Initially a function is an abstract concept, but after
much practice, a function becomes a concrete item (or chunk) to us
and we can learn the next level of abstraction.

5 SPACING AND REPETITION MATTER
How often have you heard that you should not cram for an exam?
Unless, of course, you want to forget everything by the next day.
This advice is based on one of the most predictable and persistent
effects in cognitive psychology: the spacing effect [21]. According
to the spacing effect, humans learn problem-solving concepts best
by spacing out their practice across multiple sessions, multiple days,
and ideally, multiple weeks [17, 33].
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The reason spacingworks is due to the relationship between long-
term and working memory described in section 2. When learners
practice solving problems, they practice two skills. First, matching
the information in the problem to a concept that can solve it (such as
a filtering loop), and second, applying the concept to solve the prob-
lem (such as writing the loop). The first skill requires activating the
correct neural pathway to the concept in long-term memory [13].
If learners repeatedly solve the same kind of problem, such as for-
each loop problems, then that pathway to long-term memory stays
active, and they miss practicing the first skill. A common result
of un-spaced practice is that people can solve problems, but only
when they are told which concept to use [13]. While interleaving
different types of problems, like loop and conditional problems,
can help, pathways take time to return to baseline, making spacing
necessary to get the most out of practice time [21]. In addition, the
brain needs rest to consolidate the new information that has been
processed so that it can be applied to new problems [22].

Going against this time-tested principle, intensive coding boot-
camps require learners to cram their problem-solving practice into
un-spaced sessions. While this is not ideal, researchers of the spac-
ing effect have known from the beginning that most learners still
prefer to cram their practice into as little time as possible [21]. For
people whose only viable option to learn programming is intensive
bootcamps, we can apply the spacing research to maximize their
outcomes.

To structure a day of learning, learners should limit learning
bouts to 90 minutes or less [26, 38]. The neurochemical balance in
the brain makes concentration difficult after this point [38]. After
each learning bout, take at least 20 minutes to rest[38]. Really rest
by going for a walk or sitting quietly – without working on other
tasks, idly browsing the internet, or chatting with others. Rest
speeds up the consolidation process, which also happens during
sleep [39, 69].

Within a learning bout, there are a couple of strategies to maxi-
mize efficiency. First, randomize the order of the type of problem
being solved so that different concepts are being activated in long-
term memory [13]. Be forewarned, though, that randomizing the
order improves learning outcomes but requires more effort [14].
The second strategy is to take short breaks at random intervals
to enhance memory consolidation. A 10-second break every 2-5
minutes is recommended [34].

6 THE INTERNET HAS NOT MADE LEARNING
OBSOLETE

The availability of programming knowledge changed with the ad-
vent of the Internet. Knowledge about syntax or APIs went from
being buried in reference books, to being a few keystrokes away.
Most recently, AI-powered tools like ChatGPT, Codex, and GitHub
Copilot will even fill in these details (mostly accurately) for you.
This raises an obvious question: why is it worth learning details –
or anything at all – if the knowledge is available from the Internet
within seconds?

We learn by storing pieces of knowledge in our long-term mem-
ory and forming connections between them [6]. If the knowledge
is not present in the brain, because you have not yet learned it well,
the brain cannot form any connections between it, so higher-levels

of understanding and abstraction are not possible [5]. If every time
you need a piece of code to do a database join you search online
for it, insert it, and move on, you will be unlikely to learn much
about joins. The wisdom of relying on the Internet or AI differs
between beginners and experts: there is a key distinction between
a beginner who has never learned the details and thus lacks the
memory connections, and an expert who has learned the deeper
structure but searches for the forgotten fine details [5].

There is even some evidence to suggest that searching the Inter-
net is less efficient for remembering information. One study found
that information was remembered less well if it was found via the
Internet (compared to a physical book) [23]. Another found that
immediately searching the Internet led to worse recall of the same
information later, compared to first trying to think of the answer
before resorting to searching [28]. It seems that searching may rob
the brain of the benefits of the memory-strengthening effect of
recalling information (discussed in section 1).

There is also the issue of cognitive load from section 2. An inter-
net search requires a form of context switching for the brain; its
limited attention and working memory must be switched from the
task at hand (programming) to a new cognitive task (searching the
Internet and selecting a result or evaluating an AI-generated result).
If the required knowledge is instead memorised then not only is
access much faster (like using a cache versus fetching from a hard
disk) but it also avoids the cognitive drain of context switching and
filtering out extraneous information from the search. So there are
multiple reasons to memorise information, despite it being available
on the Internet.

7 PROBLEM-SOLVING IS NOT A GENERIC
SKILL

Problem-solving is a large part of programming. One common (but
incorrect) idea in software development is to directly teach problem-
solving as a specific skill, which can then be applied to different
aspects of development (design, debugging, etc.). Thus, problem-
solving is (incorrectly) conceived as a generic skill. However, this
is not how problem-solving works in the brain.

While humans do have some generic problem-solving skills,
they are much less efficient than domain-specific problem solving
skills, such as being able to debug programs. While we can learn to
reason, we don’t learn how to solve problems in general. Instead,
we learn how to solve programming problems, or how to plan the
best chess move, or how to create a knitting pattern. Each of these
skills is separate and does not influence the others [9]. Research into
chess found little or no effect of learning it on other academic and
cognitive skills [63], and the same is true for music instruction and
cognitive training [64]. This inability to transfer problem-solving
skills is why “brain training” is ineffective for developing general
intelligence [51].

The one exception to this rule appears to be spatial skills. Spatial
skills allow us to visualize objects in our mind, like a Tetris shape,
and mentally manipulate those objects, like rotating a Tetris shape.
Training these generic skills can improve learning in other disci-
plines. This phenomenon is so unusual that it has caused much
consternation in cognitive and learning sciences [43]. Yet, spatial
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training improves performance on a range of non-verbal skills re-
gardless of initial ability, age, or type of training task [76]. Recent
work has even demonstrated that spatial training can improve ef-
ficiency for professional software developers, likely because they
are still learning new concepts [53]. Even with this strange excep-
tion, the best way to learn how to solve programming problems is
still to practice solving programming problems rather than looking
for performance benefits from learning chess or other cognitive
training.

There is a secondary implication here for recruitment. One pop-
ular idea for screening programming candidates was to give brain-
teaser puzzles, such as how to weigh a jumbo jet [56]. As Google
worked out by 2013, this is a waste of time [15] – there is no reliable
correspondence between problem-solving in the world of brain
teasers and problem-solving in the world of programming. If you
want to judge programming ability, assess programming ability.

8 EXPERTISE CAN BE PROBLEMATIC IN
SOME SITUATIONS

We have discussed many ways in which expertise benefits learn-
ing and performance. However, being an expert can also lead to
problems, as we will detail in this section.

Programmers use tools and aids to be more effective, such as
version control systems or IDEs. Such tools can have different
effects on beginners and experts. Beginners may get overwhelmed
by the amount of options available in professional tools (due to the
increased cognitive load, explained in section 2), and may benefit
from beginner-friendly hints on how to use the tool. However,
experts find the same hints more distracting than useful because
they already know what to do. This is known as the expertise-
reversal effect [36]: hints and guides that help beginners can get in
the way of experts and make them less productive.

Programmers usually learn multiple programming languages
throughout their career. Knowing multiple languages can be ben-
eficial once they have been mastered, but sometimes transferring
knowledge from one programming language to another can lead to
faulty knowledge [68]. For example, a programmer may learn about
inheritance in Java, where one method overrides a parent method
as long as the signatures match, and transfer this knowledge to
C++, where overriding a parent method additionally requires that
the parent method is declared virtual. These kinds of differences
– where features are similar in syntax but different in semantics
between languages – specifically hinder transfer of knowledge [75].

Experts often help to train beginners, but experts without expe-
rience in training others often do not realise that beginners think
differently. Thus, they fail to tailor their explanations for someone
with a different mental model. This is known as the expert blind-
spot problem: a difficulty in seeing things through the eyes of a
beginner once you have become an expert [49]. It can be overcome
by listening carefully to beginners explain their current understand-
ing and tailoring explanations accordingly.

Sometimes, however, knowledge becomes so automated that it is
difficult for experts to verbalize it [5]. This automated knowledge is
why experts have intuitions about how to solve problems or explain
their process as, "I just know." In these cases of tacit knowledge,
beginners might better learn from instructional materials designed

to support beginners, often called scaffolded instruction [44], or
from a peer rather than an expert. A more knowledgeable (but still
relatively novice) peer is a highly valuable resource to bridge the
gap between beginners and experts [1]. They can help the beginner
develop new knowledge and the expert to re-discover automated
knowledge.

9 THE PREDICTORS OF PROGRAMMING
ABILITY ARE UNCLEAR

The success of learning programming, like most activities, is built
on a mix of inherent aptitude and practice. Some people believe
it is purely about aptitude – the “you’re born with it” view – and
some believe it is almost entirely about practice – the “10,000 hours”
idea that only sufficient practice is required for expertise [27]. Both
extreme views are wrong, and in this section, we will explore the
evidence for the differing effects of aptitude and practice.

There has been much research to try to predict programming
aptitude but few reliable results. Attempts to produce a predictive
test for programming ability have generally come to naught [18].
Research has found that all of the following fail to predict program-
ming ability: gender, age, academic major, race, prior performance
in math, prior experience with another programming language,
perceptions of CS, and preference for humanities or sciences [62].
There was an industry of aptitude tests for programming that began
in the 1960s but as Robins [59] summarises, the predictive accuracy
was poor and the tests fell out of use.

There is mixed evidence for the importance of years of experi-
ence, which relates to practice. There is a correlation between the
reputation of programmers on Stack Overflow and their age: older
people have higher reputation [48]. However, a recent study found
only a weak link between years of experience and success on a
programming task among programmers who were relatively early
in their careers [55], suggesting that aptitude may have a stronger
effect than experience, at least early in programmers’ careers.

As in most domains, two factors that weakly predict success
in early programming are general intelligence [46] (see section 3)
and working memory capacity [11] (see section 2). These factors
roughly represent reasoning skills and how much information a
learner can process at once. As such, they predict the rate of learn-
ing rather than absolute ability [57]. A sub-measure of these two
factors, spatial reasoning, is a stronger predictor of success in pro-
gramming, though still quite moderate [8, 52, 53]. Spatial reasoning
also predicts success in other science and math fields [43], so this
is not programming-specific. Further, these weak to moderate cor-
relations largely disappear with increased experience for reasons
discussed in section 7 and section 2. Thus, intelligent people will
not always make good programmers, and good programmers need
not be high in general intelligence.

In short, it is very hard to predict who will be able to program,
especially in the long term. Programmers could come from any
background or demographic, and links to any other factors (such
as intelligence) are generally fleeting in the face of experience.
Therefore, in recruiting new programmers there are no shortcuts
to identifying programming ability, nor are there any reliable “can-
didate profiles” to screen candidates for programming ability.
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10 YOUR MINDSET MATTERS
There is a long-standing idea of a binary split in programming abil-
ity: you either can program or you cannot. There have been many
competing theories behind this [2]. One of the more compelling
theories is the idea of learning edge momentum [59], that each
topic is dependent on previous topics so once you fall behind you
will struggle to catch up. A less compelling theory is the idea of a
“geek gene” (you’re born with it, or not), which has little empirical
evidence [47]. Most recently, we have come to understand differ-
ences in programming ability as differences in prior experience [30].
Learners who might seem similar (for example, in the same class,
with the same degree, completing the same bootcamp) can have
vastly different knowledge and skills, putting them ahead or behind
in terms of learning edge momentum or, within a snapshot of time,
making them seem “born with it” or not. A similar effect is found
in any STEM field that is optionally taught before university (for
example, CS, physics, and engineering) [19].

The binary split view, and its effects on teaching and learning,
have been studied across academic disciplines in research about
fixed versus growth mindsets [24]. A fixed mindset aligns with an
aptitude view – that people’s abilities are innate and unchanging.
Applied to learning, this mindset says that if someone struggles
with a new task, then they are not cut out for it. Alternatively, a
growth mindset aligns with a practice view – that people’s abilities
are malleable. Applied to learning, this mindset says that if someone
struggles with a new task, they can master it with enough practice.

As described in 9, neither extreme view is true. For example,
practically everyone can learn some physics, even if they are not
initially good at it. However, practically no one can earn the Nobel
Prize in Physics, no matter how much they practice. In between
these extremes, we are often trying to figure out the boundaries
of our abilities. When teachers and learners approach new tasks
with a growth mindset, they tend to persist through difficulties and
overcome failure more consistently [24].

While the evidence for this effect is strong and intuitive, re-
search suggests it can be difficult to change someone’s mindset to
be more growth-oriented [16]. In particular, there are two common
misconceptions about how to promote growth mindset that prove
ineffective. The first misconception is to reward effort rather than
performance because growth mindset favors practice over aptitude.
But learners are not stupid; they can tell when they are not pro-
gressing, and teachers praising unproductive effort is not helpful.
Instead, effort should be rewarded only when the learner is using
effective strategies and on the path to success [25]. The second
misconception is that when someone approaches a task with a
growth mindset, they will maintain that mindset throughout the
task. In reality, as we face setbacks and experience failure, people
skew towards a fixed mindset because we are not sure where the
boundaries of our abilities lie. Thus, we must practice overcoming
setbacks and failures to maintain a growth mindset approach [25].

A related concept to fixed and growth mindsets is goal orienta-
tion. This is split into two categories: approach and avoidance [65].
The “approach” goal orientation involves wanting to do well, and
this engenders positive and effective learning behaviours: working
hard, seeking help, and trying new challenging topics. In contrast,
the “avoidance” goal orientation involves avoiding failure. This

leads to negative and ineffective behaviours: disorganised study,
not seeking help, anxiety over performance, and avoiding challenge.
It is important that learners can make mistakes without severe
penalties if they are to be directed towards “approach” rather than
“avoidance”.

When learning a new skill or training someone in a new skill,
remember that approaching tasks with a growth mindset is effective
but also a skill to be developed. Unfortunately, we cannot simply
tell people to have a growth mindset and reap the benefits. Instead,
nurture this skill by seeking or providing honest feedback about
the process of learning and the efficacy of strategies. For mentors,
praise areas where a mentee is making progress. For learners, reflect
on how skills have improved in the past weeks or months when
you are doubtful about your progress. Further, expect that a growth
mindset will shift towards a fixed mindset in the face of failure,
but it can also be re-developed and become stronger with practice.
Feeling discouraged is normal, but it does not mean that you will
always feel discouraged. If you feel like quitting, take a break, take
a walk, consider your strategies, and then try again.

CONCLUSION
Software developers must continually learn in order to keep up
with the fast-paced changes in the field. Learning anything, pro-
gramming included, involves committing items to memory. Human
memory is fascinatingly complex. While it shares some similarities
to computer architecture, there are key differences that make it
work quite differently. In this article we have explained the cur-
rent scientific understanding of how human memory works, how
learning works, the differences between beginners and experts, and
related it all to practical steps that software developers can take to
improve their learning, training, and recruitment.

Recommendations
We have split up our recommendations into those for recruiting
and those for training and learning.
For recruiting, we make the following recommendations:

• There are no good proxies for programming ability. Stereo-
types based on gender, race, or other factors are not sup-
ported by evidence. If you want to know how well candi-
dates program, look at their previous work or test them on
authentic programming tasks. (See section 9, section 7.)
– To emphasise a specific point: do not test candidates

with brain-teaser puzzles. (See section 7.)
• At least among young developers, years of experience may

not be a very reliable measure of ability. (See section 9.)
• A related recommendation from Behroozi et al. [10] is to get

candidates to solve interview problems in a room on their
own before presenting the solution, as the added pressure
from an interviewer observing or requiring talking while
solving it adds to cognitive load and stress in a way that
impairs performance.

For learning and training, we make the following recommendations:
• Reading a lot of code will help to become a more efficient

programmer. (See section 2, section 3.)
• Experts are not always the best at training beginners. (See

section 8.)
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• Learning takes time, including time between learning ses-
sions. Intense cramming is not effective, but spaced repeti-
tion is. (See section 5.)

• Similarly, spending time away from a problem can help to
solve it. (See section 1.)

• Just because you can find it through an Internet search
doesn’t mean learning has become obsolete. (See section 6.)

• Use examples to go between abstract concepts and concrete
learnable facts. (See section 4).

• Seeking to succeed (rather than avoid failure) and believing
that ability is changeable are important factors in resilience
and learning. (See section 10.)

Further Reading
Many books on learning are centred around formal education: they
are aimed at school teachers and university lecturers. However,
the principles are applicable everywhere, including professional
development. We recommend three books:

• “Why don’t students like school?” by Willingham [78] pro-
vides a short and readable explanation of many of the prin-
ciples of memory and how the brain works.

• “The programmer’s brain” by Hermans [32] 3 relates these
concepts to programming and describes how techniques
for learning and revision that are used at school can still
apply to professional development.

• “How learning happens: Seminal works in educational psy-
chology and what they mean in practice” by Kirschner and
Hendrick [37] provides a tour through influential papers,
explaining them in plain language and the implications and
linkages between them.

The papers cited can also serve as further reading. If you are a
software developer you may not have access to all of them. ACM
members with the digital library option will have access to the ACM
papers, although many of our references are from other disciplines.
For more recent papers, many authors supply free PDFs on their
website; you may wish to try web-searching for the exact title to
find such PDFs. Many authors are also happy to supply you with a
copy if you contact them directly.
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