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Introduction

In Mathematics modules at my institution, we challenge our students not 
only to know what certain definitions and results hold about a mathematical 
object but also to know why and to know how to represent and reason 
mathematically. Our students may convey their personal knowledge of a 
mathematical object by a picture or an example of their own reasoning pro-
cess. Through effective teaching and engagement with the rhetoric of 
Mathematics, these personal representations and intuitive reasoning pro-
cesses may be shaped into mathematical representations and mathematical 
reasoning (Ernest 1999). However, many students may resist such ‘shaping’ 
with questions such as: ‘Where will this mathematical object or result be 
used in my studies and in real life?’ This may seem to be about a particular 
object, result or topic in a particular branch of Mathematics. For many stu-
dents, it is the level of abstraction that raises the question and affects mathe-
matical proficiency. When I respond, I rarely provide an actual application 
but rather illustrate that a particular branch of Mathematics is useful as a 
whole. For example, calculus contributes to many aspects of daily life, includ-
ing the design of bridges, the modelling behind weather forecasts or the 
computer program that determines investment portfolios. However, despite 
this real- world presence, calculus is also invisible in the sense that the under-
lying mathematical calculations are not actually seen. Another example is 
that electronic circuit design found in calculators and mobile phones makes 
extensive use of so- called imaginary numbers. The informal definition of 
imaginary numbers is that they are constructed on the basis of something 
that seems impossible – namely, the square root of minus one. Nevertheless, 
imaginary numbers have significant uses.

Over the years there have been many different opinions about how to 
represent all (not only some) mathematical objects. ‘Mathematics is the 
domain within which we find the largest range of semiotic representation 
systems, both those common to any kind of thinking such as natural lan-
guage and those specific to Mathematics such as algebraic and formal nota-
tions’ (Duval 2006: 104). Therefore, Mathematics may be described as 
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having what Bernstein termed a ‘horizontal knowledge structure’ with 
‘strong grammars’ – that is, ‘a series of specialized languages with specialized 
modes of interrogation and criteria for the construction and circulation of 
texts’ (2000: 160). The ‘horizontal knowledge structure’ implies independ-
ence of these specialized languages which include probability, algebra, logic, 
graphs. Each language is unique and does not displace or disprove another 
language. Moreover, each language has an ‘explicit conceptual syntax’ 
(Bernstein 2000: 163) and strong and recognizable principles. This makes it 
challenging to move between different specialized languages and from infor-
mal to formal representations in a specialized language. Mathematical rea-
soning is how we discover, formulate, justify and generalize claims about 
mathematical objects. The reasoning techniques are intrinsically linked to 
the mathematical representation used for referring to the mathematical 
objects. The complexity of the reasoning may be algorithmic in the case of 
illustrating that a claim holds for a particular instance of the mathematical 
object or a formal proof in the case of justifying that a claim holds for the 
mathematical object.

Throughout its history, Mathematics has been analyzed by philosophers, 
mathematicians and educationalists in order to better understand the nature 
of Mathematics and the difficulties experienced by many students in devel-
oping a deep and intuitive understanding of Mathematics.

Devlin has argued that we all possess the ability to cope with Mathematics 
provided we recognize what is required:

To my mind, a limitation in coping with abstraction presents the greatest 
barrier to doing mathematics. And yet, as I shall show, the human brain 
acquired this ability when it acquired language, which everyone has. 
Thus the reason most people have trouble with mathematics is not that 
they don’t have the ability but that they cannot apply it to mathematical 
abstractions.

(Devlin 2000: 11)

Abstraction may involve starting with an entity or activity in our reality or 
world, abstracting the essential idea, features, and structure, understanding 
these as deeply and completely as possible and then defining a mathematical 
object and mathematical operations.1 However, not all Mathematics derives 
its definition from representations of physicality. Central to Mathematics are 
generalizations or different levels of abstraction which involve moving from 
abstract representations to more encompassing abstract representations. 
Mason (1996) has argued that the ability to generalize is intrinsic to our 
success in Mathematics because it enhances our capability to apply mathe-
matical concepts across mathematical tasks.

Duval (2006) has described developing mathematical proficiency as the abil-
ity (a) to distinguish a mathematical object from its representation, even though 
the only way that the mathematical object may be accessed is through its 
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representation, and (b) to move between different mathematical representa-
tions of the mathematical object. Mathematical proficiency has been defined as 
having five interdependent components:

(a) conceptual understanding – comprehension of mathematical con-
cepts, operations, and relations (b) procedural fluency – skill in carrying 
out procedures flexibly, accurately, efficiently, and appropriately (c) stra-
tegic competence – ability to formulate, represent, and solve mathematical 
problems (d) adaptive reasoning – capacity for logical thought, reflec-
tion, explanation, and justification, and (e) productive disposition – habit-
ual inclination to see mathematics as sensible, useful, and worthwhile, 
coupled with a belief in diligence and one’s own efficacy.

(Kilpatrick et al. 2001: 116)

Another description of mathematical proficiency is given in terms of ‘what 
someone knows, can do, and is disposed to do mathematically’ (Schoenfeld 
and Kilpatrick 2008: 326). Furthermore, there is the caution that assessment 
of mathematical knowledge may be complex, but assessment of strategic 
competence, adaptive reasoning and the ability to make mathematical con-
nections may be even more difficult (Schoenfeld 2007).

There have been numerous studies on student and societal perceptions of 
the nature and value of Mathematics and the effect on developing mathe-
matical proficiency. See, for example (MacBean 2004; Wood et al. 2012) and 
other related research described in those papers. MacBean notes

Many factors affect the quality of student learning. The students’ con-
ceptions of and approaches to learning, their prior experiences, percep-
tions and understanding of their subject, and the teaching and learning 
context can all influence the learning outcomes achieved.

(MacBean 2004: 553)

MacBean suggests that ‘the more students believe that mathematics is inte-
grated and integral to their degree course the more motivated they are likely 
to be, and the more meaning oriented their approaches to studying will 
become’ (MacBean 2004: 562). Furthermore, Wood suggests that students 
be encouraged to

… appreciate the mathematics of all cultures and the contribution of 
mathematical ideas to the ‘business of making accessible the richness of 
the world we are in, of making dense and substantial our ordinary, day- 
to- day living in a place – the real work of culture.’

(Wood 2000: 4)

In this chapter, I will illuminate four different insights of mathematical pro-
ficiency in terms of what mathematical knowledge and how one thinks/
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reasons mathematically. For the what mathematical knowledge I distinguish 
between knowing that vs knowing why and for the how one thinks/reasons 
mathematically I distinguish between thinking/reasoning within Mathematics 
vs beyond Mathematics. Legitimation Code Theory (LCT) provides concep-
tual tools to understand these complexities of mathematical proficiency and 
for a differentiated support model for the sustained improvement of the 
learning experience in Mathematics.

Methodology

My starting point is the Specialization dimension of LCT, which highlights 
that every knowledge practice, belief or knowledge claim ‘is about or ori-
ented towards something and made by someone’ (Maton 2014: 29). The 
organizing principles of these knowledge- knower structures can be concep-
tualized as specialization codes, generated by epistemic relations and social 
relations. For knowledge claims, epistemic relations are between knowledge 
and objects towards which the claim is oriented, and social relations are 
between knowledge and individuals conveying or making the claim. Each of 
these relations can be stronger or weaker along a continuum. For example, 
in developing mathematical proficiency, specialized knowledge is empha-
sized (stronger epistemic relations) while personal experience and opinions 
of students or lecturers are downplayed (weaker social relations) since not all 
mathematical ideas can be related to a personal experience or opinion. The 
two continua together generate specialization codes, illustrated in Figure 
10.1: knowledge codes emphasize specialized knowledge, knower codes 

epistemic relations

social
relations

knowledge élite

relativist knower

ER+

ER–

SR– SR+

Figure 10.1 The specialization plane (Maton 2014: 30).
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emphasize the right kind of knower, élite codes emphasize both specialized 
knowledge and the right kind of knower and relativist codes are ‘anything 
goes’ (Maton 2014).

The Specialization dimension has provided insights into, for example, 
degrees of clash between: students’ dispositions and educators’ pedagogic 
practices, different approaches within a specific discipline, curriculum and 
pedagogy of a discipline (Maton 2014, Maton and Chen 2020).

The epistemic relations focus specifically on the nature of knowledge 
and provide a means to consider the relationship between the what and 
how of a knowledge practice. This relationship, explored by the epistemic 
plane, differentiates between ontic relations (OR) that represent the 
strength of relations between a knowledge claim and the object of study 
and discursive relations (DR) that represent the strength of relations 
between different ways of referring to or dealing with objects of study 
(Maton 2014). Each relation can be independently stronger (+) or weaker 
(–) along a continuum. When brought together, the two strengths gener-
ate four insights. For purist insights, practice is based on strong adherence 
to both a strongly distinguished object of study (OR+) and strongly dis-
tinguished approach (DR+). For doctrinal insights, practice is not gov-
erned by a distinctive object of study (OR–) but by a strongly differentiated 
approach (DR+). For situational insights, knowledge practices are special-
ized by a distinctive object of study (OR+) and by relative freedom as to 
how this object is studied (DR–). For knower/no insights, practice is either 
characterized by ‘anything goes’ (neither a differentiated object nor a 
differentiated approach; OR–, DR–) or, where these weaker epistemic 
relations are paired with stronger social relations, legitimated through 
attributes of the knower.

This epistemic plane, together with reflections on my own experience as 
a mathematician, inspired the theoretical framework I shall use in this 
chapter. I adapt ontic relations (OR) to refer to ‘what mathematical 
knowledge’ and discursive relations (DR) to refer to ‘how one thinks/
reasons.’ (This is only one way these concepts can be used and reflect my 
concerns in this chapter.) It is expected that for a mathematical object of 
study in a Mathematics module, students’ knowledge of a certain mathe-
matical claim about the mathematical object may vary from not knowing 
that the claim holds to simply knowing that the claim holds to knowing 
why the claim holds. Also, a student’s way of expressing their understand-
ing may have stronger or weaker levels of mathematical formalism. The 
stronger and weaker ontic relations and discursive relations may be iden-
tified along a continuum of mathematical knowledge and a continuum of 
more or less mathematical formalism, respectively, as in Table 10.1. At 
right angles to each other, these continua form four quadrants each repre-
senting an insight of mathematical proficiency, as previously depicted in 
Figure 10.2.
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There is no right or wrong insight. However, when embarking on a math-
ematical study, a certain insight may be a preferred starting point over the 
others. Success in mathematical thinking and reasoning requires ‘insight 
shifting’ which involves strengthening or weakening ontic relations and/or 
discursive relations. In particular,

Table 10.1  Ontic relations and discursive relations for a particular mathematical 
object of study

Ontic relations
(OR)

Strength of relations 
between a 
knowledge claim 
and the mathe-
matical object of 
study

+
stronger

Know why a mathematical 
claim holds for the 
mathematical object of 
study

–
weaker

Know that a mathematical 
claim holds for the 
mathematical object of 
study

--
weakest

Do not know that a 
mathematical claim holds 
for the mathematical 
object of study

Discursive 
relations

(DR)

Strength of relations 
between different 
ways of referring 
to or reasoning 
about the 
mathematical 
object of study

+
stronger

Think/reason with  
examples, representations, 
and techniques from 
mathematics

–
weaker

Think/reason with  
examples, representations, 
and techniques from 
beyond mathematics

ontic relations

discursive
relations

OR+

OR–

DR– DR+

situational purist

knower/no doctrinal

Figure 10.2 The epistemic plane (Maton 2014: 177).
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 • abstract from personal representation and intuitive reasoning into more 
mathematical representations and formal reasoning techniques (towards 
stronger discursive relations);

 • acquire knowledge of the underlying mathematical ideas and principles 
(towards stronger ontic relations);

 • generalize from a specific instance of a mathematical concept or tech-
nique to a more encompassing mathematical concept or technique 
(move towards weaker ontic relations and stronger discursive relations, 
thereby shifting from situational insight to doctrinal insight);

 • specialize from a general concept to instances of the concept (move 
towards weaker ontic relations and so from purist insight to situational 
insight); and

 • link or apply, if possible, the mathematical knowledge and skills to a 
personal experience, perspective or a real- world phenomenon (move to 
knower/no insight).

Each of these shifts provides a significant challenge when developing mathe-
matical proficiency in a mathematical topic. Different levels of Mathematics 
proficiency may be described in terms of the different insights navigated. In 
particular, a basic level of mathematical proficiency will be entirely in doctri-
nal insight; an intermediate level of mathematical proficiency will draw on 
two different insights – typically, doctrinal insight and situational insight; 
and a high level of mathematical proficiency will draw on three different 
insights as the needs for abstraction, generalization or specialization demand.

Without effective strategies for facilitating insight shifting, there is a 
potential for clashes. For example, mathematicians may be working in purist 
insight while most students may be entirely in doctrinal insight or situational 
insight where less mathematical formalism and rigour are used. Another 
potential clash arises for mathematical topics that have emerged entirely in 
purist insight without any link to experiential phenomena.

Analysis of Mathematics proficiency using the epistemic plane

Four case studies have been selected, based on what is studied in a typically 
undergraduate Mathematics module, namely, mathematical objects, mathe-
matical activities, mathematical representations and mathematical structures. 
Each will be briefly introduced and an example will be analyzed with the 
emphasis on the shifting between insights needed for developing mathemat-
ical proficiency and the challenges that are typically experienced.

A mathematical object

A mathematical object may be an abstraction of a real- world object or a gen-
eralization of an existing mathematical object. As an example, consider the 
mathematical object called a function. At first, a ‘function’ (a term due to 
Leibnitz (1646–1716)) simply meant a dependence of numbers given by an 
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analytic expression (situational insight). As the need for formalism and gen-
erality grew, the notion of a function went through a gradual transition to the 
abstract notion of a function between two sets, which was first introduced by 
Richard Dedekind (1831–1916) (doctrinal insight). However, when setting 
up a family tree relationship of family members, ancestors and relatives, it will 
be observed, for example, that the ‘mother- of’ relationship may relate one 
family member to more than one other family member (knower/no insight). 
Such relationships are captured by the abstract notion of binary relation, 
introduced by Augustus de Morgan (1860) and Peirce’s logic of relatives 
(1870), which generalizes the notion of a function (purist insight). The big-
gest challenge here is understanding that the purist insight of a function and 
the doctrinal insight of a function are equivalent. A strategy for developing 
mathematical proficiency in a mathematical object (in general) is depicted in 
Figure 10.3 and may involve the following sequence: situational insight to 
doctrinal insight to knower/no insight to purist insight to doctrinal insight.

A mathematical activity

A mathematical activity typically originates from a practical experience such as, 
for example, measuring or counting. Let us consider the mathematical activity 
of finding areas. All first- year Mathematics students will know that the area of 
a circle may be found by using the formula A = πr2 and also know how to use 
that formula mathematically, for example, to find the area of a circle given its 
radius or its diameter (doctrinal insight). Unfortunately, few students will 
know why this is the case. However, people have known, at least since biblical 
times, that there is a way to divide a cake or a piece of land between two peo-
ple so that neither is envious of the other – one person cuts and the other 
chooses (knower/no insight). Properties of the whole may be described in 
terms of properties of the two parts. Abstracting from this to a circle cut into 

Rules that show
the dependence
of two entities.

A binary relation from
a set X to a set Y is a
set of ordered pairs
(x,y) with x ϵ X and
yϵ Y

DR–

OR–

OR+

DR+

A function f between
sets X and Y is such
that for each x ϵ X
there is at most one
yϵ Y with (x, y) ϵ f.

Family tree of
relatives

ontic relations

discursive
relations

Figure 10.3 Insights for functions.
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segments, the area of the circle may be found as the sum of the areas of those 
segments (situational insight). Reasoning formally in terms of the Riemann 
sum and the definition of a definite integral yields a formal derivation of the 
formula (purist insight). Therefore, a strategy for developing mathematical 
proficiency in a mathematical activity (in general) is depicted in Figure 10.4 
and may involve the following sequence: doctrinal insight to knower/no 
insight to situational insight to purist insight. The biggest challenge is the 
generalization needed to move from situational insight to purist insight.

Linking two mathematical representations of a mathematical object

A mathematical object may have different mathematical representations, 
depending on the perspective or branch of Mathematics in which it is being 
explored. The mathematical object called a torus arises in different branches of 
Mathematics including calculus and topology and also beyond Mathematics in 
astrophysics, biology medicine, nuclear physics. Mathematical proficiency in 
each mathematical representation would be needed before being able to link 
them. A student may (a) have heard the expression that a coffee cup and 
doughnut are the same to a mathematician because they both have a single 
hole (knower/no insight), (b) investigate various torus- shaped objects (situa-
tional insight), (c) explore the basic calculus representation of a torus as the 
surface of revolution generated by revolving a circle in a three- dimensional 
space (doctrinal insight) and (d) move to a more sophisticated topological 
representation of a torus as a closed surface with a hole, defined by the product 
of two circles (purist insight). Therefore, a strategy for developing mathemati-
cal proficiency in linking mathematical representations of a mathematical object 
(in general) is depicted in Figure 10.5 and may involve the following sequence: 
knower/no insight to situational insight to doctrinal insight to purist insight. 

ontic relations

discursive
relations

Finding the area
of a circle

Mathematical
derivation of

formula

Mathematical
formula

Human activity of
dividing a cake
or piece of land

DR–

OR–

OR+

DR+

Figure 10.4 Insights for a mathematical activity.
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The biggest challenges typically arise in generalizing from situational insight to 
doctrinal insight or in abstracting from doctrinal insight to purist insight.

A mathematical structure

Mathematical structures express mathematical principles or abstractions 
intended to capture generic properties about a collection of objects (situa-
tional insight). A mathematical structure may be likened to a human skeleton. 
The skeleton is the basic structure of the human body. Although the outward 
appearances of people may differ, the inward structure, the shape and arrange-
ment of the bones are the same (knower/no insight). Similarly, mathematical 
structures represent the underlying sameness in situations that may appear 
outwardly different. Following the Hilbert programme of 1920 and assum-
ing set theory, a mathematical structure is a formal axiomatic system consist-
ing of vocabulary of symbols and connectives, axioms capturing properties of 
certain symbols and connectives, and rules for combining symbols and con-
nectives and reasoning about them (purist insight). For example, the collec-
tion of real numbers with designated symbols 0 and 1, operations of addition 
and multiplication and axioms of associativity, commutativity, identity is a 
familiar mathematical structure (doctrinal insight). Therefore, a strategy for 
developing mathematical proficiency in mathematical structures, depicted in 
Figure 10.6, may involve linking an informal and a formal yet familiar math-
ematical structure and then linking the formal yet familiar mathematical the-
ory with formal more abstract mathematical structure.

These strategies may support students to develop mathematical proficiency 
that has breadth and depth. It will have breadth in the sense of linking dif-
ferent mathematical representations and the associated reasoning techniques 

ontic relations

discursive
relations

Torus-shaped
objects

Complex
representation of

the abstract
mathematical

object

Basic
representation of

the abstract
mathematical

object

Joke that a coffee
cup and a

doughnut are the
same

DR–

OR–

OR+

DR+

Figure 10.5  Insights for linking mathematical representations of a mathematical 
object.
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at the same level of formalism and of transferring acquired mathematical 
knowledge and skills within or beyond Mathematics. It will have depth in the 
sense of understanding and using different levels of mathematical formalism 
and reasoning techniques.

Discussion and conclusion

Understanding the complexities of Mathematics proficiency of students 
entering tertiary education has been identified as important for improving 
student success in STEM programmes (Bohlmann et al. 2017; Council on 
Higher Education 2013; Scott et al. 2007). A mathematically proficient stu-
dent typically has a productive disposition towards Mathematics – that is, the 
tendency to see sense in Mathematics, to perceive Mathematics as both use-
ful and worthwhile, to believe that steady effort in learning Mathematics 
pays off and to be an effective doer of Mathematics (Kilpatrick et al. 2001).

Using the Specialization dimension of LCT, this chapter illuminates dif-
ferent insights of mathematical proficiency and possible strategies for devel-
oping mathematical proficiency necessary for students to be successful in 
STEM programmes. The key elements studied in Mathematics modules 
were analyzed in terms of what mathematical knowledge and how one thinks/
reasons, and the emerging insights were depicted on the epistemic plane.

Four key observations may be made. Firstly, moving horizontally, from 
weaker to stronger discursive relations (understood here as how one thinks/
reasons), corresponds to the challenge experienced with the nature of 
abstraction in Mathematics. Secondly, moving vertically, from weaker to 
stronger ontic relations (understood here as what mathematical knowledge), 
corresponds to the challenge experienced with the level of abstraction in 
Mathematics. Thirdly, mathematical proficiency presents differently in indi-
vidual students and corresponds to the ability to shift between different 

ontic relations

discursive
relations

Informal definition
of mathematical

theory
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of and formal
reasoning in
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Routine mathematical
reasoning in a
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Figure 10.6 Insights for concept of mathematical structure.
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insights. Fourthly, there are potential clashes when the preferred insight of 
the lecturer and the students differ.

The evidence of challenges with insight shifts and clashes suggests that the 
Mathematics curriculum could benefit from an analysis of the different insights 
of the mathematical objects, mathematical activities, mathematical representa-
tions and mathematical theories covered and from making these different 
insights explicit, especially where the biggest challenges are anticipated.

An approach for integrating into the curriculum the insight shifting strate-
gies proposed in this chapter is what may be called a ‘differentiated support’ 
model. This model acknowledges different levels of mathematical proficiency 
of students and offers different levels of support and enrichment so that stu-
dents have effective learning opportunities to reach their level of success along 
the path that best suits their style of learning. A key feature of the model is 
facilitating the navigation between the insights. In particular, for each 
Mathematics topic, there is a worksheet which is divided into three (or ideally 
four) parts: procedure problems for checking understanding of core concepts 
and reasoning for routine problems (doctrinal insight); principle questions for 
understanding the more theoretical and abstract components of the topic, for 
developing mathematical writing ability and for thinking critically about results 
(purist insight); a possibilities section with specific instances or applications to 
explore, alternative ways to explore a concept and a project (situational insight); 
and, if possible, reading material of applications in other disciplines or in the 
real world (knower/no insight). Students are supported and incentivized to 
submit or present their representation and reasoning approaches to the lecturer 
or tutor for feedback and there are multiple opportunities for fine- tuning.

This differentiated support model may also provide a valuable framework 
to guide the planning of technology- mediated support initiatives. Based on 
the profile of a student, a personalized suite of compulsory and optional 
learning opportunities for development and growth in mathematical profi-
ciency could be offered throughout the year. It could give students the free-
dom to choose what they would like to do and when, and develop 
mathematical proficiency in areas identified through assessments for deter-
mining proficiency gaps as well as those that have been self- identified and 
which are of particular interest to the student.

It is hoped that the insights of this chapter will contribute to improving 
mathematical proficiency and will be of value to other fundamental disci-
plines in Science.

Note
 1 For example, from the human activity of counting, the mathematical objects 

called numbers are abstracted together with algebraic operations. Mathematical 
objects are abstract, unobservable and on the platonic view exist independently. 
Mathematical representations are the way we refer to mathematical objects. If we 
think about how to deal with mathematical objects (such as numbers, functions, 
relations, fields) it is not possible to perceive, manipulate or work with a mathe-
matical object without its mathematical representations. For example, we cannot 
‘see’ a function without its algebraic expression or its graph.
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