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Introduction

The transition from first to second year is identified as a challenge for many 
students in undergraduate programmes around the world (see, for example, 
Hunter et al. 2010 in the USA context; Yorke 2015 in the UK context). Yet, 
there is surprisingly little research on this transition, with most studies focus-
ing either on students’ experiences of the first year or on students’ exit- level 
outcomes. In South Africa, likewise, concerns about transition tend to be 
concentrated at the transition from school to first- year university. However, 
studies have argued that there are key ‘epistemic transitions’ (Council on 
Higher Education (CHE) 2013) throughout the undergraduate degree that 
need pedagogical attention.

In this chapter, we illustrate how concepts from Legitimation Code 
Theory (LCT; Maton 2014) were used to develop insights into the chal-
lenges that STEM students face in making the transition to second year. 
These insights then were used to frame an educational intervention in 
second- year Mathematics, and this chapter reports on the impact this inter-
vention had on students’ learning.

Context of the study

This study took place in the Faculty of Natural Sciences at an historically 
black South African university. Many of the students are first- generation stu-
dents in higher education, meaning that their parents/guardians had not 
attended a tertiary institution. About a third of the first- year intake of BSc 
students is placed in an extended curriculum programme (ECP). This ECP 
is a four- year BSc degree, which essentially enables students to complete the 
first year of their BSc degree over two years, with foundation provision 
embedded in Physics and Mathematics courses (including strengthening 
conceptual understanding, strengthening academic literacy in engaging with 
science texts, etc.). Despite the extensive foundational provision of the ECP, 
which aimed to give students a solid foundation in Physics and Mathematics, 
students’ transition to second- year Physics and Mathematics remained an 
ongoing challenge. Student motivation appeared to decline in second year, 
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accompanied by poor pass rates; this was the case both for ECP students and 
for those entering second year via the regular three- year BSc route. One 
obvious reason for the students’ transition challenges is that the second year 
Physics and Mathematics courses become more mathematically demanding. 
In addition, students are required to apply the Mathematics learning from 
their Mathematics courses to their Physics courses, which many find chal-
lenging (Bing and Redish 2009).

In order to better understand students’ transition challenges, first-  and 
second- year Physics and Mathematics classes were observed and interviews 
conducted with second- year students. Tools from LCT were useful in char-
acterizing the teaching practices in these courses and in beginning to identify 
some of the obstacles that students were experiencing in making the transi-
tion to second year.

Legitimation Code Theory as a tool for thinking about 
transition to second year

LCT is a sociological ‘toolkit’ (Maton 2014: 15) which integrates and 
extends key concepts from, among others, the work of sociologists Basil 
Bernstein and Pierre Bourdieu, including Bernstein’s code theory, knowl-
edge structures and pedagogic device (Bernstein 1996), and Bourdieu’s con-
cepts of field theory, capital and habitus (Bourdieu 1994); for a more detailed 
account of the develop of LCT, see Maton (2014). LCT comprises three 
active dimensions or sets of concepts that explore different organizing prin-
ciples underlying practices, dispositions and context. For the purposes of this 
chapter, we focus on two dimensions: Semantics and Specialization. Concepts 
from the Semantics and Specialization dimensions provide useful tools to 
characterize STEM knowledge structures and practices, in order to begin to 
tease out some of the transition challenges that students experience. In this 
section, we provide a brief overview of the key concepts from the Semantics 
and Specialization dimensions used in our study.

Concepts from Semantics for thinking about transition to second year

Concepts from the Semantics dimension of LCT (Maton 2009, 2013, 2014, 
2020) provide useful conceptual tools for allowing us to analyze the knowl-
edge structure and practices of STEM disciplines. Semantic gravity is defined 
as the extent to which meaning ‘is related to its context of acquisition or use’ 
(Maton 2009: 46). When semantic gravity is weaker, meaning is less depend-
ent on its context. In other words, semantic gravity is related to the degree 
of abstraction. For example, the decontextualized, abstract Physics concept 
of ‘force’ can be applied to a wide range of specific contexts, ranging from 
vast galaxies to tiny atoms.

Semantic density describes the complexity of meanings and is defined as 
the extent to which meaning is concentrated or condensed within symbols (a 
term, concept, phrase, expression, gesture, etc.) (Maton 2014). In STEM 
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disciplines, meaning is often condensed within nominalizations (scientific 
words or phrases that are dense in meaning), such as ‘acceleration’ (Physics), 
‘photosynthesis’ (Biology). A great deal of information is also condensed 
into graphs, symbols, diagrams and mathematical equations.

To visualize the relative strengths of semantic gravity (SG) and semantic 
density (SD) over time, Maton (2013, 2014, 2020) developed the analytical 
method of semantic profiling. This indicates in the form of a diagram how 
strengths of SG and SD vary over time. The strengths of SG and SD are 
represented on the y- axis, with time on the x- axis. In the semantic profile, SG 
and SD are typically portrayed as inversely related, though this may not 
always apply or be analytically appropriate. In such cases, either drawing sep-
arate profiles or representing SG and SD on a semantic plane, allowing SG 
and SD to vary independent of each other (see Maton 2014; Blackie 2014, 
for a Chemistry example). The semantic profile can be used to map practices 
as they unfold in time, whether in a student task (e.g. an essay or problem 
task), a single classroom episode, part of a lesson, a series of lessons, an entire 
course or even a whole curriculum. Figure 11.1 shows three different seman-
tic profiles: if these corresponded to three different lessons, then A1 would 
represent a lesson in which the teaching remained at the level of general 
principles, representing weaker semantic gravity and stronger semantic den-
sity (SG−, SD+); A2 would represent a lesson that remained at the level of 
specific examples, representing stronger semantic gravity and weaker seman-
tic density (SG+, SD−); B would indicate a lesson where there was shifting in 
semantic gravity (context- dependence) and semantic density (complexity) 
through unpacking and repacking of representations. Profile B is said to have 
a greater ‘semantic range’ than either A1 or A2.

Variations in strengthening and weakening of semantic gravity and seman-
tic density, Maton (2013) argues, is one way that meaningful learning is 
enabled. Many teachers of science go from the level of a general principle 
down into specific examples but never connect the examples back to the 
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Figure 11.1 Illustrative profiles and semantic ranges (Maton 2013: 13).
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underlying principle. Maton terms this a ‘down escalator’ profile because the 
teacher repeatedly ‘unpacks’ and simplifies technical concepts and relates 
these to specific examples, yet never models the process of shifting upward, 
through condensing meaning into technical terms or relating specific exam-
ples to the general principles (Maton 2013: 17). In this study, the method of 
semantic profiling is used to characterize the teaching practices in Physics 
and Mathematics courses.

Concepts from Specialization for thinking about transition to second year

In analyzing the form taken by knowledge in various disciplines, Bernstein 
(1996) introduced the concept of ‘knowledge structure’ and distinguished 
between ‘hierarchical’ and ‘horizontal’ knowledge structures. STEM disci-
plines (such as Physics, Chemistry, Biology) are typically characterized as 
‘hierarchical knowledge structures,’ each being ‘an explicit, coherent, system-
atically principled and hierarchical organization of knowledge’ (Bernstein 
1996: 172). Horizontal knowledge structures, on the other hand, are those 
which consist of ‘a series of specialized languages, each with its own special-
ized modes of interrogation and specialized criteria’ (Bernstein 1996: 172). 
Bernstein classifies Mathematics as a horizontal knowledge structure since ‘it 
consists of a set of discrete languages for particular problems’ (Bernstein 
2000: 165); As Wolff elaborates, the ‘languages’ of Mathematics (for exam-
ple, geometry, calculus, trigonometry, algebra) each have their own principles 
and procedures. They ‘need to be acquired independently, and do not neces-
sarily relate to each other or integrate concepts across the languages’ (Wolff 
2015: 39). Mathematics possesses what Bernstein terms a ‘strong grammar,’ 
meaning that its languages ‘have an explicit conceptual syntax’ (Bernstein 
2000: 163). This is in contrast to horizontal knowledge structures with ‘weak 
grammar’ (for example, disciplines within the arts and humanities).

The Specialization dimension of LCT, with its concept of ‘knowledge- 
knower structures,’ usefully expands on Bernstein’s conceptualization of 
knowledge structures by asserting that each knowledge structure also has an 
expectation, whether explicit or tacit, of a certain kind of ideal knower 
(Maton 2014). Specialization is based on the assumption that every social/
educational practice is oriented towards something (knowledge) and by 
someone (knower). For each practice, it is necessary to identify ‘what can be 
legitimately described as knowledge (epistemic relations); and who can claim 
to be a legitimate knower (social relations)’ (Maton 2014: 29). Epistemic 
relations (ER) and social relations (SR) in any practice can be stronger (+) or 
weaker (–), and can be represented on the specialization plane, as shown in 
Figure 11.2. By examining the epistemic relations and social relations of a 
particular practice, its position on the plane can be seen to fall into one of 
four quadrants – described as knowledge codes, knower codes, élite codes and 
relativist codes.

STEM disciplines are typically characterized as being characterized by 
stronger epistemic relations (ER+) since the scientific knowledge that the 
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scientist possesses is emphasized and the attributes or dispositions of the 
scientist (or knower) are downplayed, representing weaker social relations 
(SR−): a knowledge code. Typically, Mathematics is typically characterized 
as a knowledge code. In contrast, in (for example) some humanities disci-
plines, specialized knowledge may be downplayed (ER–) and attributes of 
knowers may be emphasized (SR+): a knower code. Music as a high school 
subject is considered an élite code (Lamont and Maton 2008) since musi-
cal knowledge is valued (ER+), as well as having a musical ‘feel’ or dispo-
sition (SR+).

The characterization of Mathematics as a knowledge code (where disposi-
tions of knowers are downplayed) is in contrast to the popular belief in that 
‘innate ability’ matters in Mathematics learning. Contemporary Mathematics 
education research (e.g. Boaler 2016) notes the prevalence of the belief held 
by schoolchildren, their parents and teachers that ‘some people are born 
with a “math brain” and some are not, and that high achievement is only 
available to some students.’ This belief in ‘innate ability’ suggests relatively 
strong social relations and therefore suggests that Mathematics is often per-
ceived as an élite code. This belief in ‘innate ability’ is also linked to the 
widespread phenomenon of ‘Mathematics anxiety,’ which is defined as anxi-
ety about one’s ability to do Mathematics. Mathematics anxiety correlates 
negatively with confidence and motivation (Ma 1999; Ashcraft 2002). This 
perception of the ‘innateness’ of Mathematics ability can also be traced to 
historical accounts of the development of Mathematics as a discipline. De 
Freitas and Sinclair (2014) note how the Cartesian mind- body divide is still 
dominant in Mathematics. They argue that this belief – that ‘intuition’ and 
‘innate mental talent’ are key for success in Mathematics – can be alienating 
and play a gate- keeping role for the discipline.

epistemic relations

social
relations

knowledge élite

relativist knower

ER+

ER–

SR– SR+

Figure 11.2 The specialization plane (Maton 2014: 30).
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In summary, contemporary research on Mathematics education as well as 
historical accounts of the development of Mathematics as a discipline sug-
gests that a perception of ‘innate ability’ dominates, positioning these per-
ceptions of Mathematics within an élite code on the Specialization plane. 
The implications of this is that Mathematics education needs to explicitly 
challenge these perceptions of ‘innateness’ – with not just a focus on the 
acquisition Mathematics knowledge, but also on developing the knower dis-
positions for the discipline (see, for example, Boaler (2016) on developing 
students’ mathematical mindsets).

In the context of undergraduate science, echoing Maton’s emphasis that 
‘there are always knowledges and always knowers’ (2014: 96), Ellery (2018, 
2019) has challenged the notion that the emphasis on specialized knowledge 
should eclipse issues about knowers dimensions. Ellery distinguishes between 
production- context knowers (as a scientist) and learning- context knowers (as 
a science learner). Production- context knowers need to value the epistemic 
norms and values of science, including rigour, curiosity, objectivity, working 
accurately, thinking analytically and critically (Ellery 2018: 31). Learning- 
context knowers need to develop knower attributes appropriate for learning 
university science. These include dispositions such as working independently, 
reflecting on one’s learning (being metacognitive) and adopting appropriate 
approaches to learning (Ellery 2018); in other words, focusing on deep 
approaches (developing conceptual understanding) rather than surface 
approaches (focusing on rote learning) (Marton and Säljö 1976).

Ellery argues that in many traditionally content- dominated STEM courses 
(with a strong knowledge code), there is not enough explicit focus on devel-
oping knower dispositions, values and ways of thinking important for success 
in the discipline: ‘to become effective science learners, students need to 
acquire not only certain practices and knowledge (representing weaker epis-
temic relations) but also certain knower dispositions (representing stronger 
social relations)’ (Ellery 2019: 231). Similarly, Mtombeni (2018) argues that 
the lack of focus on social relations in a first- year Chemistry curriculum limits 
the development of students’ knower dispositions.

An LCT analysis of the transition to second year

In this section, we draw on concepts from the LCT dimensions of Semantics 
and Specialization to develop an understanding of the hurdles students face 
in making the transition to second year. Using the concepts of semantic 
gravity and semantic density, we present semantic profiles of some represent-
ative Physics and Mathematics lessons to highlight differences and disconti-
nuities in teaching practices between first- year and second- year courses. We 
also draw on the Specialization concepts of knowledge- knower structures 
and specialization codes to illuminate some of the difficulties students face in 
succeeding in their second- year studies. Data for this section is drawn from a 
previous study (Conana et al. 2019), which constructed semantic profiles of 
lecture sequences in first- year ECP Physics and second- year Physics and 
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Mathematics and interviewed second- year students about their experiences 
in transition to second year.

Semantics analysis

In applying the concepts of semantic gravity and semantic density to the 
context of undergraduate Physics, we used what in LCT is termed a ‘transla-
tion device’ (Maton and Chen 2016) which helped to show how concepts 
are realized in the empirical data of the study. The translation device draws 
on the work of Lindstrøm (2012) and Georgiou (2014), who have presented 
ways of coding the relative strengths of semantic gravity in the context of 
Physics lectures and students’ responses to Physics tasks. They use the label 
abstract to refer to statements of general principles or laws; concrete refers to 
a description of specific examples; intermediate (or linking) refers to instances 
where general principles and specific examples are linked. Table 11.1 presents 
the translation device for semantic gravity and semantic density used in this 
study to characterize pedagogic practices.

In constructing semantic profiles of lessons, data was drawn from class-
room observation notes and video recordings of lectures. From this data, 
semantic profiles were constructed to map shifts in semantic gravity and 
semantic density during lessons, as lecturers moved between abstract princi-
ples and specific examples, as well as the ways in which representations were 
unpacked or condensed during each lecture. The relative strengths of SG 
and SD were characterized as concrete, linking or abstract. At the concrete 
level, the lecturer would be referring to specific examples (SG+) and rep-
resentations would be unpacked, often in the form of a verbal representation 
(SD−). At the abstract level, the lecturer would be using new concepts or 
general principles (SG−), mostly represented in semantically denser modes 
(graphical, diagrammatic, mathematical). The linking level is characterized 
by the lecturer building on familiar concepts or principles in a linking way; in 
doing so, dense representations were being explicitly unpacked or repacked 
into their constituent parts or meaning. For details of the data reduction and 
analysis process, and the translation device used, see Conana et al. (2019).

Through mapping shifts in semantic gravity and semantic density, seman-
tic profiles were constructed for several lessons. Here, we present three 

Table 11.1 Translation device for various levels of Semantics
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semantic profiles: one for an ECP Physics lesson (Figure 11.3), one for a 
second- year Physics lesson (Figure 11.4) and one for a second- year 
Mathematics lesson (Figure 11.5). On the semantic profiles, coding (in the 
form of line thickness) is used to indicate the different forms of interaction 
in lectures (with a thin line indicating where only the lecturer is talking and 
a thick line indicating lecturer- student interactions).

A more detailed analysis of these semantic profiles is given in Conana et al. 
(2019). The comparison of the first year and second year semantic profiles, 
together with data from student interviews, highlighted several key differ-
ences or discontinuities in teaching practices:

Firstly, the semantic range in the lessons diminishes with the transition to 
second year. As evident in Figure 11.3, the first year ECP teaching spans a 
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Figure 11.3 Semantic profile of a first-year ECP physics lesson.
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Figure 11.4 Semantic profile of a second-year physics lesson.
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large semantic range (spanning abstract and concrete). By contrast, the 
semantic range of the second- year Physics and Mathematics course is nar-
rower, predominantly at the abstract level, which is to be expected in these 
more mathematically advanced courses. Some students describe how the 
increased abstraction led to a decrease in motivation for their studies; for 
example: ‘I’ve lost my motivation this year – it’s just theory,’ and ‘There’s 
something missing in terms of what is happening this year – I’ve lost that 
‘Oomph’ in Maths.’

Secondly, interactive engagement was a key aspect in the first- year ECP 
teaching that was less common in much of the second- year teaching. The 
semantic profile in Figure 11.3 shows that student engagement was a key 
feature of the lecture sequence: the line thickness coding on the semantic 
profile indicates the many times during the lecture when there was student 
engagement. The faster pace of the second- year courses precluded much 
interaction with lecturers. Students noted how they missed this engagement 
and would have welcomed more structured group work in their second- year 
classes; for example: ‘Our lecturers are not interacting with us….They are so 
fast, they are just running with the notes’ and ‘It would be much better if we 
could work in groups, like in first year, because you can work with someone 
else than working on your own. It was more effective.’

Thirdly, the range of representational modes used in the second year nar-
rowed. While ECP Physics teaching explicitly incorporated a range of rep-
resentational modes (gestures, diagrams, graphs, mathematical equations), 
in the second- year courses, mathematical representations inevitably became 
more prevalent. This is to be expected in senior Physics and Mathematics 
courses. However, what the second- year Mathematics students noted was 
that representations with strong semantic density were often taken for 
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Figure 11.5 Semantic profile of a second-year mathematics lesson.
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granted and not explicitly unpacked in the teaching; for example: ‘The prob-
lem is, now everything is abstract. We have to picture these problems. I 
struggle to visualize them. I tried to, but you have to capture all these concepts 
visually,’ and ‘Our lecturers teach us how to draw graphs but never teach us 
how to view them.… I have a lot of sketches in my notebook that I still don’t 
understand.’

In summary, the Semantics analysis highlighted the discontinuities in 
teaching practice from first year to second year. These included: a curtailed 
semantic range concentrated more at the abstract level, less interactive 
engagement, a narrower range of representations used and less explicit 
unpacking of these representations in second year.

Specialization analysis

Data from student interviews was analyzed with the Specialization concept 
of ‘knowledge- knower structures,’ which highlights the importance not 
just to focus on disciplinary knowledge but also ‘knower dispositions.’ 
Perceptions of Mathematics as an élite code were evident in interviews with 
the second- year Mathematics students, where the notion of ‘innate talent’ 
was implicit. One student commented that most of the Mathematics post-
graduate students seemed to come from outside of South Africa and ques-
tioned whether local students were perhaps not strong enough for 
postgraduate Mathematics studies.1

Furthermore, student interviews suggested that some of the learning- 
context knower dispositions that had begun to be developed in the ECP 
were no longer explicitly addressed in the second year Mathematics. These 
included encouraging students to work independently, to work collabora-
tively on whiteboards and discuss Mathematics. Students noted that they 
missed the opportunity for structured group work; for example: ‘We are not 
interactively doing the work in class, most of us we are doing the work at 
home alone. I feel like we should do group work.’

Ellery notes that ‘while disciplinary knowledge tends to form the main 
focus of science courses, becoming and being an independent learner is usu-
ally expected of students but is seldom explicitly articulated nor specifically 
supported, and therefore remains part of the “hidden curriculum”’ (Ellery 
2019: 234). She argues that knower dispositions, such as becoming an 
autonomous learner, needs to be explicitly modelled and scaffolded.

Students’ reflections on their experience of second year suggested that 
they found the abrupt lack of this modelling and scaffolding of their inde-
pendent learning difficult. It was assumed that students would work through 
notes and exercises at home, but this was not made explicit nor guided; for 
example:

When you advance to second year maths you just get a shock. This year, 
in second year maths, the lecturer just reads the notes and explains a few 
concepts and just – you need to do it all at home. There’s no time [as in 
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first year] that you have to work on something for weeks, it’s just about 
what you are doing at home.

I feel like there’s lots of gaps this year. You have to constantly go back, 
which is, you have to do the stuff everyday in order to get it. But the 
more you go back, the more you fall behind and the more you create 
more gaps for yourself. Unless you can work very fast, your time will fall 
short. This year, it is all about how you use your time. In first year, it 
wasn’t like this. When we started with second year, it was like ‘Boom!’ 
They were all throwing things on us, it is so overwhelming.

In summary, the Specialization analysis highlighted the prevalence of an élite 
code perception among students, as well as a lack of modelling and scaffold-
ing of learning- context knower dispositions in the second year Mathematics.

Rethinking teaching practices based on LCT analysis

The LCT tools had provided useful insights into the challenges students face 
in the transition to second year. The Semantics findings suggested that atten-
tiveness to particular aspects of the teaching (semantic range, interactive 
engagement and the use of multiple representational modes) would be likely 
to support students in accessing the disciplinary knowledge and in navigat-
ing the ‘epistemic transition’ to second year. The Specialization findings sug-
gested that attentiveness to the knower dispositions needed for STEM 
studies would also be important.

The next step was to use this LCT analysis to rethink and redesign aspects 
of the second- year teaching and curriculum. The high failure rate in second- 
year Mathematics was a grave concern, and so the first author (the faculty’s 
teaching and learning specialist) presented the research findings to the 
Mathematics Department. This generated much discussion among the 
second- year lecturers and a willingness to work alongside the teaching and 
learning specialist in rethinking the second- year courses. LCT provided a 
useful conceptual framework for this collaboration; as Clarence has noted 
in her work with academic staff, the LCT tools assisted ‘both academic 
development practitioners and disciplinary educators, working collabora-
tively, to analyse and change pedagogical practice in higher education’ 
(2016: 126). This model of collaboration between educational specialist/
academic literacy practitioner and disciplinary lecturers is described by 
Jacobs (2007), who argues that disciplinary lecturers are so immersed in 
their respective disciplines that the representations and discourse features 
of their discipline tends to be tacit and often taken for granted and that 
they may therefore find it difficult to make these discipline representations 
explicit to their students (see also, Marshall et al. 2011, for an example of 
this collaborative model in the context of Physics). In the section that fol-
lows, we discuss how the findings from the LCT analysis were used to 
rethink teaching practices.
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Changes introduced on the basis of Semantics analysis

The purpose of classroom sessions was altered – instead of class time being 
used for the transmission of course material, students were expected to come 
to class prepared so that time could be spent tackling Mathematics tasks in 
class. This was achieved by replacing the traditional lecture format with an 
interactive workshop format, encouraging student engagement, discussion 
and ‘talking Mathematics.’ As one student who had failed the course in the 
previous year commented: ‘Last year we would just sit in rows and listen; 
now we can interact and talk Mathematics to each other.’

There was a deliberate focus on widening the semantic range in classroom 
sessions through referring to specific examples whenever feasible. In 
Mathematics, the process of moving from specific examples to the general 
principles is termed ‘abstraction,’ which many students find challenging. 
Wiggins (2018) argues that Mathematics lecturers need to emphasize that 
Mathematics has its roots in the study of real- world problems and to demon-
strate abstract concepts through specific examples whenever feasible.

Mastering disciplinary representations takes place over an extended period 
of time, beyond first year. Yet, as Fredlund et al. (2012) note, lecturers are 
often so familiar with disciplinary representations that are oblivious to the 
‘learning hurdles’ involved in interpreting the intended meaning of these 
representations (also see, Conana et al. 2016, 2020). In response to the 
students’ and researchers’ observations that representations were often 
taken for granted in the second- year Mathematics course, there was also a 
more explicit focus on exploring and unpacking a range of representations. 
Wood et al. (2007) argue that a key purpose of undergraduate Mathematics 
teaching is ‘to assist students to make links between various representations 
of mathematical concepts’ (p. 12), including oral and written language, 
mathematical notations and visual diagrams. They argue that these links 
between representations ‘form the basis for deep learning and fluency in 
working with mathematical ideas’ (ibid.:12).

Changes introduced on the basis of Specialization analysis

The Specialization analysis emphasized that, while Mathematics knowledge 
is central (relatively strong epistemic relations), more time is needed in the 
curriculum to address knower dispositions (strengthening social relations). 
As Ellery (2019) argues, in many traditionally content- dominated STEM 
courses (with a strong knowledge code), there is not enough explicit focus 
on developing the knower dispositions, values and ways of thinking impor-
tant for success in the discipline.

Drawing on Ellery’s work, the interventions were designed to develop 
students’ knower dispositions. One key aspect of the interventions was to 
challenge the ‘innateness’ belief that situates Mathematics as an élite code in 
students’ eyes. Through developing students’ dispositions, such as confi-
dence, autonomous learning, deep approaches to learning and enhanced 
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metacognitive capabilities, the notion was emphasized that success in 
Mathematics relies on ‘attitude, not aptitude.’

Before the start of the second year, a weeklong ‘boot camp’ was held for 
all second- year Mathematics students. This was explicitly geared towards 
supporting students in the transition to second year: sessions focused on 
overtly articulating the sorts of knower dispositions needed for second year 
Mathematics and these were modelled during the weeklong intervention.

Sessions on the nature of mathematical thinking developed the production- 
context knower dispositions relevant for Mathematics, the epistemic norms 
and ways of thinking in Mathematics. These included sessions on logic, and 
the role of proof in Mathematics. Hodds et al. (2014) recommend an inter-
vention that focuses on logical relationships and introduced a pedagogical 
technique called ‘self- explanation training’ to help students with the com-
prehension of proofs. Worksheets were developed that systematically decon-
struct the theorem, followed by a rigorous set of step- by- step guidelines 
through the body of the proof that helps a student to understand technical 
terms used and to develop their cognitive capacity to handle the details of 
deductive arguments.

Many students initially voiced anxiety at the prospect of dealing with the 
advanced Mathematics of second year; the boot camp provided a broad, 
conceptual introduction to the second- year mathematical courses (Advanced 
Calculus and Linear Algebra), emphasizing the real- world origins of these 
mathematical fields and how students’ high school and first- year Mathematics 
knowledge formed the foundation for these more advanced- level courses. In 
addition, the role of Mathematics as the language of the sciences was fore-
grounded (with sessions on Mathematics for Physics, Statistics, Computer 
Science and Chemistry by lecturers from these disciplines).

Other sessions addressed the learning- context knower dispositions appro-
priate for learning Mathematics. These included students’ dispositions such 
as autonomous learning, adopting deep approaches to learning and develop-
ing metacognitive capabilities. Boot camp activities developed students’ 
metacognition, with many opportunities to reflect on their learning and 
identify challenges. Mathematics education research shows the value of this 
sort of explicit focus on students’ approaches to learning and their concep-
tions of Mathematics: Wood et al. (2012) identified three levels of concep-
tions of Mathematics, ranging from fragmented conceptions of Mathematics 
as a collection of components and techniques (level 1), Mathematics as a 
focus on models and abstract structures (level 2) and Mathematics as tools 
for understanding the world (level 3). Studies show that fragmented concep-
tions of Mathematics (level 1) are linked to surface approaches to learning 
and poor- quality learning outcomes, whereas the more cohesive conceptions 
of Mathematics (levels 2 and 3) are linked to deep approaches to learning 
and better learning outcomes (Crawford et al. 1994, 1998).

Besides the initial boot camp, the teaching approach of the second- year 
Mathematics courses was adapted in response to the research findings. As 
noted above, the traditional lecture format was transformed into a workshop 
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format. Students’ capacity to work independently was supported and devel-
oped through assigning class preparation worksheet tasks so that more time 
was freed up during class for in- class activities and discussion of the chal-
lenges the students encountered in the tasks.

Students’ metacognition was developed through activities that encour-
aged them to reflect on their approaches to learning and identify problem 
areas they were experiencing. In class, students worked in groups on tasks 
and were encouraged to discuss their thinking, and compare solutions. 
Students were encouraged to present their struggles to the whole class, and 
peers would then suggest strategies and different approaches to solving the 
problems.

The development of these knower dispositions was enabled by the sense of 
a classroom community, which gave students the space and confidence to 
‘speak’ Mathematics and to feel part of a learning community (see Engstrom 
and Tinto 2008, on the impact of learner communities on student retention 
in higher education). This minimized the Mathematics anxiety many stu-
dents were laden with. In addition, physical space was created in one of the 
Faculty buildings for students to meet informally and discuss Mathematics 
– this space had movable tables and chairs, and plenty of whiteboards for 
working on tasks together. During some classes, postgraduate students were 
invited to do short twenty- minute presentations; these students were role 
models for second- year students, helping them to envisage themselves as 
becoming mathematicians.

Impact of the intervention on student learning

Overall, the Mathematics lecturers reported an increased confidence in stu-
dents and improved attitude towards Mathematics learning. The opportu-
nity to ‘talk Mathematics’ built their confidence and developed their sense of 
themselves as ‘Mathematics students.’ Their sense of agency in relation to 
their Mathematics learning developed; as their metacognitive approach 
developed, they became less focused on getting the right answer and more 
focused on the mathematical process. This was evident in the student 
exchanges on an informal ‘WhatsApp group’ the students had created: the 
emphasis was not on sharing solutions to problems, but rather on providing 
feedback to each other on approaches to problems. Examples of peer com-
ments were: ‘Did you think about …’? ‘What am I missing here?’; ‘No- one 
post a solution please – I want to figure it out myself.’

As students’ sense of identity as Mathematics students deepened, there 
were unexpected developments: the students formed a Mathematics Club 
(which arranged lunchtime seminars and events), and a Mathematics Hub (a 
campus residence- based Mathematics Club). Students’ confidence to speak 
about Mathematics also led to the establishment of an outreach project in 
local high schools. More students wanted to take part in the South African 
Tertiary Mathematics Olympiad, indicating that the science knower disposi-
tion of curiosity (see Ellery 2018) had been fostered in these students, as 
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they enjoyed applying their creativity and critical thinking skills, and explor-
ing concepts beyond the second- year curriculum.

The students also began to reflect more on the relationship between 
Mathematics and their other second- year science courses, and lecturers in 
these other courses noted improved success in these courses. As much as 
motivation, attitude and confidence matter, the main currency of undergrad-
uate education is assessment results, and here the impact of the intervention 
was significant: the pass- rate in the second- year Mathematics courses 
increased significantly, from about 30% to about 80%.

Another interesting development was that the positive ‘turnaround’ in 
second- year Mathematics had a wider impact in the Mathematics Department 
as a whole. More senior postgraduate tutors were now willing to tutor 
second- year courses: in the past, they had found tutoring demoralizing, but 
now they were keen to work with these motivated students and keen to 
motivate them further. Similarly, the newly motivated second- year students 
became keen to tutor the first- year students, and as a result, the first- year 
Mathematics pass- rate also increased. In the year subsequent to the first 
implementation of this intervention, the enrolment in third- year Mathematics 
more than doubled, from 15 to about 40 students.

Concluding remarks

This research on the transition from first to second year in higher education 
addresses the paucity of research in this area. We note that in South Africa, 
as elsewhere, most of the research focuses on the transition from school to 
higher education and neglects ‘epistemic transitions’ (CHE 2013) later in 
the trajectory of undergraduate students.

Concepts from Semantics and Specialization provided useful insights into 
the challenges students face in the transition to second year. The Semantics 
analysis suggested that attentiveness to particular aspects of the teaching 
(greater semantic range, more interactive engagement, the use of multiple 
representations and more explicit unpacking of these) would be likely to 
support students in accessing the disciplinary knowledge and in navigating 
the ‘epistemic transition’ to second year. The Specialization analysis high-
lighted the way that Mathematics operates as an élite code for many univer-
sity Mathematics students; the findings suggested that, while a focus on 
knowledge tends to dominate undergraduate Mathematics teaching, atten-
tiveness to the production- context knower dispositions and learning- context 
knower dispositions (Ellery 2018) needed for success in Mathematics studies 
would also be important. These LCT research findings were then used to 
frame an educational intervention in second- year Mathematics. This inter-
vention was found to lead to significant changes in students’ attitudes 
towards Mathematics learning, as well as in their learning outcomes. 
Although the focus of our analysis in this chapter was second- year 
Mathematics, these findings would likely be applicable to a range of STEM 
disciplines. The Semantics and Specialization tools are valuable for teasing 
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out ways in which the semantic features and the knowledge- knower struc-
tures of a discipline might be made more accessible to students.

Note
 1 Under Apartheid in South Africa, deliberate education policy restricted access 

to quality Mathematics education for black learners.
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