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CHAPTER 7 

MULTIMODAL KNOWLEDGE: USING LANGUAGE, MATHEMATICS AND 

IMAGES IN PHYSICS 

 

Y. J. Doran 

 

INTRODUCTION 

 

What knowledge do students need in order to be successful in science? Such a question 

pushes at the heart of educational programmes that aim to develop a comprehensive 

pedagogy that reaches across disciplines. In one sense, the answer is simple. The knowledge 

students need is specified in the syllabus, detailed in the textbook and explained in the 

classroom. From this perspective it is simply a matter of reading the textbook, listening to the 

teacher and writing down the knowledge in the exam or in an assignment. However, few in 

educational research would argue for such a simplistic model. For one, it is clear from 

decades of research into literacy across the curriculum that the processes of reading, listening 

and writing are far from unproblematic. From an educational linguistic perspective, there is a 

range of highly specific literacies at stake; students must be able to read and write a wide 

range of scientific genres, and interpret and make use of highly intricate scientific language 

(Martin 1985, Lemke 1990, Rose et al. 1992, Halliday and Martin 1993, Christie and Martin 

1997, Martin and Veel 1998, Unsworth 1997, 2001a, Halliday 2004, Martin and Rose 2008, 

Martin and Doran 2015, Hao 2020). In the classroom they need to be able to listen and 

interpret what the teacher is saying, engage with them in dialogue and successfully reconstrue 

scientific meanings at the teacher’s bidding. (Rose 2004, 2014, 2020, chapter 11 of this 
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volume, Christie 2002, Rose and Martin 2012). These literacy demands involve not just 

language, but extend to the multiliteracies inherent in science schooling – where language, 

mathematics, images, specialized symbolic formulae, animations, and demonstration 

apparatus all need to be ‘read’ as one and reorganized where necessary in assignments and 

exams (Lemke 1998, 2003, Kress et al. 2001, Unsworth 2001b, O’Halloran 2005, Parodi 

2012, Doran 2017, 2018, 2019, Doran and Martin, chapter 5 of this volume). To learn the 

knowledge of a discipline, one must be able to grasp the way it is construed through language 

and other semiosis; and to show you have the knowledge, you must be able to marshal these 

specialized linguistic and semiotic resources to reconstrue these meanings. 

 

Such mastery of a wide range of literacy demands is in many ways the crux of many issues in 

learning how to do science. But simply being able to read and write scientific language and 

the particular text types needed across the curriculum is not enough. Students need to 

understand where and when each particular text type, semiotic resource or particular 

linguistic resource is appropriate. They need to be able to interpret new situations and new 

demands and organize the meanings they have learnt in an appropriate manner. That is, they 

need to understand the principles underpinning the selection and application of particular 

meanings and why they are used. At stake here is a way of seeing the world. Students must 

develop a scientific gaze that allows them, amongst other things, to shift between the 

knowledge of the empirical world and that of abstract theory, and between everyday 

understandings and technical conceptions. They need to be able to make connections between 

phenomena that at first glance may seem disparate and carry out specialized procedures and 

protocols to investigate prescribed phenomena. And they must be able to marshal particular 

literacies to do this at the appropriate time. 
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This chapter explores how knowledge is organized multimodally in science, focusing in 

particular on physics as it is taught in schooling. It will explore two main concerns: the 

technical meanings construed through the key resources of language, image and mathematics, 

and the underlying principles that organize a scientific gaze and enable students to understand 

when to use particular technical meanings and semiotic resources. To do this, it will view the 

meanings made from two perspectives. First it will consider scientific meanings through the 

register variable field from Systemic Functional Linguistics (SFL) (Doran and Martin, 

chapter 5 of this volume). Second it will explore these meanings through the sociological 

framework of Legitimation Code Theory (LCT), which is being widely used alongside SFL 

(Maton and Doran 2017a, Martin et al. 2020), specifically its dimension of Semantics (Maton 

2014, 2020). 

 

The perspective from field in SFL will explore how particular technical meanings are 

organized by different resources – language, mathematics and image. Here we will be 

concerned with whether technical meanings are presented statically as set of items positioned 

in taxonomies (either of classification – type/subtype, or of composition – part/whole), or 

whether they are presented dynamically as series of events (known as activities) given in 

more or less detail. In addition, we will be concerned with whether these items or activities 

involve particular properties that can be measured and to what degree all of these meanings 

are placed in large, interdependent networks of meaning. Each dimension of field will be 

introduced in more detail as they become relevant, but this analysis will show that particular 

semiotic resources tend to specialize in particular ways of organizing meaning, while 

backgrounding others. In this sense, this chapter will show that the organization of content in 

many disciplines is inherently multimodal, as particular components of its technical array 

tend to be given full expression through particular semiotic resources. 
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Complementing this view from SFL we will also consider knowledge in physics from the 

perspective of Semantics in LCT (Maton 2014, 2020). This will give an insight into two 

organizing principles that characterize knowledge practices. The first is known as semantic 

gravity (SG), which conceptualizes the degree of context-dependence of meaning. Stronger 

semantic gravity (SG+) indicates meanings are more dependent on their context; weaker 

semantic gravity (SG–) indicates meanings are less dependent on their context. For example, 

in a primary school physics text that we return to below, the concepts of pushing and pulling 

are introduced by listing a series of examples, such as Michael pushes the keys to a tune, 

which refers to an image of a child playing a keyboard (Riley 2001). In this case, we would 

say that the pushes here involves relatively strong semantic gravity (SG+) as it is dependent 

on a particular instance of pushing – it has relatively high context-dependence. In contrast, 

later on in the book, the text generalizes in order to introduce the concept of force, using the 

sentence A push is a force. Here push does not make reference to any particular instance of 

pushing, rather can be applied to any number of instances. In this case, we can describe push 

as indicating weaker semantic gravity (SG–) than the first instance as it has less context-

dependence. Shifts in semantic gravity are crucial to the organization of knowledge in 

physics (and indeed all sciences), and are organized through language, mathematics and 

image. 

 

The second organizing principle at the centre of Semantics in LCT is semantic density (SD). 

Semantic density refers to the complexity of meaning. Stronger semantic density (SD+) 

indicates more complex meanings; weaker semantic density (SD–) indicates less complexity. 

In the sentence a push is a force, the term force is a technical term in physics. As students 

move through the years, this term becomes more centrally integrated into the vast network of 
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meaning organizing physics knowledge. For example, it underpins Newtown’s laws of 

motion, which organize the field of mechanics; it underpins different types of field in both 

nuclear physics and in relativity; and it forms a variable within innumerable mathematical 

equations at all levels. In this sense, force exhibits relatively strong semantic density (SD+) 

as it has a relatively complex set of meanings associated with it. In contrast the term push 

exhibits significantly weaker semantic density (SD–), as it does not resonate out to the same 

degree range of technical meaning in the field.i 

 

Semantic gravity and semantic density can vary independently. On this basis, the semantic 

plane in Figure 7.1 (Maton 2016: 16) shows the possibilities for variation – with semantic 

gravity and semantic density as axes and each quadrant representing a different semantic 

code. 

 

Figure 7.1. The semantic plane (Maton, 2016, p. 16) 
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Rhizomatic codes (top-right quadrant) indicate meanings that maintain weaker semantic 

gravity (SG–) and stronger semantic density (SD+). In common-sense terms, this quadrant 

indicates meanings that are relatively ‘generalized’ and ‘complex’, as often exemplified by 

technical theory. In contrast, prosaic codes (bottom-left quadrant) indicate meanings that are 

stronger semantic gravity (SG+) and weaker semantic density (SD–); meanings that are 

‘concrete’ and ‘simple’, and often illustrated with common-sense everyday knowledge. 

Worldly codes (bottom-right quadrant) indicates stronger semantic gravity and stronger 

semantic density; meanings that are both highly context-dependent and very complex. This 

quadrant is often illustrated by knowledge in areas such as vocational education, and 

practically oriented fields and crafts, where projects are often embedded in a specific instance 

or case (such as building a particular bridge over a particular river) but involve a complex 

knowledge-base to achieve their goals. Finally, rarefied codes (top-left quadrant) indicates 

meanings with weaker semantic gravity and weaker semantic density; meanings that are 

relatively context independent but simple.  

 

The semantic plane enables us to see the possible combinations and gradations available 

across the disciplinary map. Focusing on physics, it is tempting to immediately position it 

within the top-right quadrant as a rhizomatic code – as being both ‘abstract’ (weaker 

semantic gravity) and ‘technical’ (stronger semantic density). Indeed if we follow Biglan’s 

(1973) characterization of physics as a relatively ‘pure’ discipline (i.e. non-applied) and a 

relatively ‘hard’ science, or Kolb’s (1981) description of physics as both a relatively 

reflective (non-applied) but also a particularly ‘abstract’ discipline, then a classification of 

physics as a rhizomatic code makes sense. However, once we look at the actual practices of 

any field, it becomes clear very quickly that no discipline fits into a single box. There is 
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immense variation across sub-disciplines (is it nuclear physics? classical mechanics? 

electromagnetism? astrophysics?); across year level (elementary, secondary, tertiary? which 

year in each?), across individual classes and across research, practice and education. LCT is 

invaluable here: the semantic codes are not boxes – the semantic plane is a topological space 

with indefinite variation within each code. 

 

As we will see, one of the key shifts that occurs in physics texts from secondary education 

onwards is the ability to move between abstract theory and empirical instances while still 

using highly complex knowledge. Put another way, a key pattern is the varying of semantic 

gravity while maintaining relatively strong semantic density – shifts between rhizomatic 

codes and worldly codes. Similarly, when teaching new concepts, teachers and textbooks will 

regularly shift between ‘everyday’, ‘concrete’ knowledge of examples (prosaic codes) and 

the abstract theoretical knowledge typically considered the realm of physics (rhizomatic 

codes). In short, the key to doing physics is not just in being able to understand highly 

technical, abstract knowledge, but to vary the abstraction and technicality as required by the 

situation and to utilize the particular semiotic resources that organize this. 

 

The following sections will step through the ways language, mathematics and image are used 

to organize both the technical meanings of physics and the shifts in semantic gravity and 

semantic density that allow students to bridge between ‘theory’ and the ‘everyday’, the 

‘empirical’ and the ‘abstract’, and the ‘concrete’ and the ‘complex’. First, it will focus on the 

developments in language that move knowledge from common-sense to technical 

understandings. Then it will turn to the move from language to mathematics in early 

secondary school and the reorganization of knowledge this entails. Finally, we will consider 

how the range of images used in physics complement the technical meanings and shifts in 
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Semantics seen in mathematics. In sum, we will see that the three semiotic resources work 

together to organize the knowledge of physics in a way that allows students to build a 

scientific gaze. 

 

 

 

 

KNOWLEDGE THROUGH LANGUAGE 

Language and activity 

An early stepping stone into physics is exemplified by a book for elementary (primary) 

school students, focusing on pushing and pulling (Riley 2001). This book gives a series of 

examples of pushing and pulling with very large photos of each action: 

 

 When do you push? 

  You push a pram 

  You push a swing 

 

 When do you pull? 

  You pull a brush through your hair 

  You pull a book from your bag. 

 

This very concrete set of examples illustrates a series of physical events. In terms of the SFL 

register variable field, these events construe activities (see Doran and Martin, chapter 5 this 

volume). Activities such as these offer the child a dynamic perspective on the world as 
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happenings. To build a picture of the activities involving pushing and pulling, the text lists a 

long series of examples with large pictures of each activity: 

 

 A digger pushes rocks into a heap. 

 A toy car needs a push to make it go. 

 Michael pushes the keys to play a tune. [referring to playing the keyboard] 

 Alex pushes the ball when he kicks it. 

 … 

 An engine pulls a train. 

 A tractor pulls a trailer. 

 A dog pulls on its lead. 

 Tim pulls on a jumper. 

 

From the perspective of more advanced physics, this listing of examples appears relatively 

simple. However it performs a crucial early role in building an uncommon-sense 

understanding of the world. By listing a series of other quite different activities (kicking, 

playing with a car, piling rocks in a heap, putting on a jumper, driving a train) as ‘pushing’ 

and ‘pulling’, the text emphasizes their similarity and categorizes them as instances of the 

more general activity of pushing and pulling. In addition, the book illustrates that a wide 

range of items may do the pushing or pulling or be pushed or pulled. This is an important 

move into scientific knowledge as it means first that all examples may be discussed along 

similar lines, and second that pushes and pulls can be found almost everywhere. The student 

is learning that this wide range of activities, in some sense, all do the same thing.  
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In terms of LCT Semantics, this weakens the semantic gravity of knowledge. The individual 

examples describe specific events that are relatively context-dependent. But as more 

examples are listed, the differences between them are generalized in a way that emphasizes 

their similarities as pushes and pulls. That is, the text weakens semantic gravity so that it can 

eventually discuss pushes and pulls as events of their own (discussed below). Similarly, in 

terms of semantic density, by listing this series of examples as pushes and pulls, it relates 

these otherwise distinct events together. This adds connections between their meanings, 

slightly adding to their complexity, and thus strengthening their semantic density. Although 

these are relatively small shifts in semantic gravity and semantic density in comparison to 

higher level physics, they are important first steps in learning this knowledge which will 

repeated regularly as students move through school. 

 

Looking further into the text, we see it also illustrates that pushing and pulling has effects on 

the world (‘^’ indicates that one activity follows or is entailed by the other): 

 

 You push on clay to squash it flat. 

 

  You push on clay 

  ^ (in order to) 

  squash it flat 

 

… 

 

You pull an elastic band to stretch it. 
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 You pull an elastic band 

 ^ (in order to) 

 stretch it 

 

… 

 

Paul pushes the pedals on his bicycle. The wheels turn round. 

 

 Paul pushes the pedals on his bicycle 

 ^ 

 The wheels turn round. 

 

Here, the text presents squashing, stretching and turning as resulting from the pushing or 

pulling in the previous clause. Series of events such as these where one activity implicates or 

results from another are a key feature of scientific discourse (Wignell et al. 1993). From the 

perspective of field, they show chains of activity that are implicated by one another.ii 

Although at this stage each implication relation includes only two activities, later on in 

schooling these series become long and intricate, involving a range of possible dimensions of 

conditionality and causation (Rose 1998) and underpinning key genres in science such as 

explanations (Unsworth 1997, Martin and Rose 2008). Interpreting this from the perspective 

of LCT Semantics once more, these implication relations work to connect activities together, 

further strengthening their semantic density. 

 

Activities and items 
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By generalizing a range of common-sense activities as ‘pushing’ and ‘pulling’, and linking 

them up with other activities to form series of implication activities, this primary school book 

has already taken some key steps in the development of an uncommon-sense scientific field. 

But the book does not stop here. After introducing a number of examples, the text 

nominalizes the activities of pushing and pulling as pushes and pulls, through a resource 

known as ‘grammatical metaphor’ (Halliday 1998): 

 

 A toy car needs a push to make it go 

 … 

 What pushes and pulls can you find as you play? 

 … 

 Can you think of three more pulls? 

 … 

Emma gives a weak push to her car. 

Ben gives a strong push to his car. 

  

In doing so, the text reconstrues the activity of pushing and pulling as an item push and pull; 

it turns an ‘event’ into a ‘thing’. This is arguably one of the most significant moves in the 

transition to uncommon-sense knowledge (Halliday and Martin 1993, Halliday 1998), as it 

enables much greater possibilities for meaning than if it were dealing with just an activity, or 

just an item.  

 

In this first instance, itemizing these activities enables them to ‘do’ other activities 

themselves. For example: 
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 A push can squash something 

 … 

 A pull can stretch something 

 

Here, the push and pull has been abstracted from any particular thing doing the pushing and 

pulling. This establishes a more generalized series of activities whereby one activity (the 

push or pull) leads to another (squashing or stretching). This further weakens semantic 

gravity, as the pushes and pulls are no longer tied to any particular instances: 

 

 Push 

 ^ 

 squash something 

and 

 

 Pull 

 ^ 

 stretch something 

 

This text does not take the next step of also generalizing the squashing and stretching and 

putting the whole series of implication in one clause, such as in squashes are caused by 

pushes (a specific type of grammatical metaphor known as a logical metaphor; Hao 2018, 

Halliday 1998). But through this initial grammatical metaphor, the book establishes the basic 

building blocks that students need for a scientific construal of experience. 
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Second, by itemizing pushing and pulling as push and pull, the text enables them to enter into 

relations normally reserved for items. This is most clearly seen toward the end of the book, 

when it specifies that: 

 

 A push is a force 

 … 

 A pull is a force 

 

Here, the pushes and pulls are classified as types of force. In doing so, the book establishes a 

classification taxonomy. As a wide range of previous events have already been described as 

pushes and pulls, this means they are all in turn classified as types of force. The term force 

then resonates out to a wide range of common-sense experiences into a single technical term 

(Wignell et al. 1993). Again in terms of LCT Semantics, this strengthens its semantic density, 

establishing a relatively large series of interconnections emanating from the technical term 

force (see Maton and Doran 2017b). As students move through later years of school, force 

will become increasingly central to the field of physics as it distils more and more meaning. 

 

Language and properties 

 

There is one final step this text takes in construing its scientific view of the world. This can 

be seen in the following example where the text notes that pushes and pulls can be stronger or 

weaker: 

 

 Emma gives a weak push to her car. 

 Ben gives a strong push to his car. 



 15 

 Ben’s car goes further than Emma’s car. 

 

In the terms of Doran and Martin (chapter 5 of this volume) model of field, weak and strong 

are properties of the pushes. Properties are meanings attached to an item or an activity that 

can be graded as more or less. As this instance shows, by attributing the property of strength 

to the activities, the two pushes can be ordered as more or less strong (or strong and weak) – 

what is referred to as an array of strength (Doran 2018). Importantly, this array of strengths 

can also have effects. In this case, the differences in strength lead to a difference in the 

distance each of the cars go. One array, the strength of the push, leads to another array, the 

distance of the movement, shown by Ben’s car goes further than Emma’s car. 

 

This potential for giving items and activities a property, ordering these properties into arrays, 

and setting up chains of dependencies and causation between different arrays, opens a further 

avenue for building connections between meanings and strengthening semantic density.  

 

 

 

 

Building the scientific gaze 

 

Although at first glance the meanings being made at this level may appear relatively simple, 

this text has introduced each of the main basic building blocks that students will need 

throughout their scientific study. From the perspective of field, the text has explored a 

dynamic perspective on phenomena as activities of pushing and pulling, complemented with 

a static perspective of pushes and pulls as items, and added gradable properties of strength to 
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the pushes and pulls. In addition, the text has introduced small sets of relations between each 

of these meanings. It has brought together activities into relations of implication, where one 

activity entails another (such as pushing leading to squashing); it has brought together items 

into a small classification taxonomy whereby one set of items are positioned as types of 

another (i.e. pushes and pulls as types of force); and it has ordered sets of properties in 

relation to each other along an array (where pushes and pulls are ordered as more or less 

strong). Table 7.1 synthesizes the field-specific meanings made through language to this 

point. 

 

Elements of field Examples 

activity single activity An engine pulls a train. 

momented as an implication activity You push on clay to squash it flat. 

item single item What pushes can you find as you play? 

items in a (classification) taxonomy A push is a force 

property single property Emma gives a weak push to her car. 

properties ordered into an array Ben’s car goes further than Emma’s car. 

 

Table 7.1. Elements of field in a primary school text 

 

These elements of field underpin the content knowledge developed in science from primary 

school onward. As students move through schooling, implication series, uncommon-sense 

taxonomies and arrays will be extended and integrated; and as we will see in the following 

sections, they will be greatly elaborated through the use of images and mathematics. 

However, the introduction of these meanings do more than simply lay out the specific types 

of technical meaning needed in science. They also provide early steps in shifts that underpin 

the scientific gaze. In particular, they show a pathway through which students can move from 

relatively everyday concrete meanings to more uncommon-sense meanings. More technically 
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in terms of LCT, they model a pathway from relatively weak semantic density to slightly 

stronger semantic density by raising the complexity of meanings, and from relatively strong 

semantic gravity to slightly weaker semantic gravity by lessening the context-dependence of 

meanings. 

 

In terms of semantic density, we have seen that the text establishes relations between 

examples first by likening them together as examples of pushing and pulling, and second by 

connecting them into classification taxonomies, arrays, and relations of implication. This 

takes relatively distinct common-sense meanings and begins to establish a more elaborated 

networks of meaning. The final step in strengthening semantic density in this text comes 

through the introduction of the term force. By classifying pushes and pulls as forces, the text 

condenses all of the meanings established through the book into a single term. This positions 

it as a key instance of technicality in the field of physics (Halliday and Martin 1993), which 

exhibits relatively strong semantic density (Maton and Doran 2017b). Although the field of 

physics at this stage is not particularly elaborated, the term force is the first to position the 

entire discussion within the technical domain of physics. 

 

At the same time, the text weakens the semantic gravity of its knowledge. It generalizes a 

series of distinct examples as the ‘same’ events – pushing and pulling – thereby moving them 

further away from any particular instance. It then reconstrues these events of pushing and 

pulling as items: pushes and pulls. This has the effect of extricating pushes and pulls from 

any particular things doing the pushing and pulling, and ensures they can be discussed as 

items in themselves. Extending this, by technicalizing pushes and pulls as forces, the text 

further lessens its context-dependence, weakening semantic gravity. As Doran and Maton 

(2020) argue, positioning meanings within more elaborated networks of meaning within a 
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particular field tends to stabilize them. It makes them more dependent on other meanings in 

the field than on any particular context in which it is used, and in doing so weakens its 

semantic gravity. 

 

These movements in semantic gravity and semantic density are mapped in Figure 7.2. As the 

plane indicates, a number of the linguistic resources used have effects on both semantic 

gravity and semantic density. This means that for students reading this text, the scientific 

knowledge to be learned is two-fold. On the one hand, students are to learn the specific 

content meanings associated with pushing, pulling and force – considered here through the 

field relations organizing scientific meanings. On the other hand, underpinning this, students 

are to learn that scientific knowledge involves reconstruing everyday situations into less 

context-dependent and more complex meanings that can resonate out to a range of other 

situations. In terms of LCT, they are learning that the scientific gaze involves being able to 

weaken semantic gravity and strengthen semantic density across a range of situations. 
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Figure 7.2. Movements in the semantic plane through the language of pushing and pulling 

 

 

KNOWLEDGE THROUGH MATHEMATICS 

 

Language occurs across all levels of science. The patterns shown in primary school where 

common-sense meanings are reconceptualized into uncommon-sense, technical meanings 

recur innumerable times throughout schooling. With each passing year, the expanse of these 

meanings increase, with deeper and more integrated relations in field being built, 

significantly strengthening semantic density. All the while, everyday meanings with stronger 

semantic gravity are reconceptualized in terms of more generalized meanings with weaker 
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semantic gravity. For students successful in accessing the knowledge of science, this pattern 

instils a gaze that values movements from prosaic code (SG+, SD–) conceptions of the world 

to rhizomatic code (SG–, SD+) reconstruals.   

 

From the perspective of activity, the later years of schooling build much longer implication 

series in order to explain and predict phenomena. These are complemented by activities 

associated with experimental procedures and recounts, which involve expectancy series. In 

these activities, relations tend to unfold through time in terms of what is expected to happen, 

rather than via definite entailment (Hao 2020, Doran 2018). In terms of taxonomy, larger 

classification taxonomies are complemented by compositional taxonomies that construe parts 

to wholes (such as a nucleus to an atom). 

 

In addition to this, one of the major changes in the move from primary school to secondary 

school tends is often an increased emphasis on properties. As mentioned above, properties 

construe gradable phenomena – as in the strength of a push. These properties may be ordered 

into arrays – as in one push is stronger than another. Such arrays enable science to construe 

the world not just in terms of categorical distinctions, but also as involving infinitely variable 

gradations of more or less. This allows science to technicalize the 'fuzziness' of the physical 

world, where things are often distinguished by degree rather than in terms of discrete 

oppositions. 

  

From secondary school onwards, a regular resource for organizing properties is mathematical 

symbolism (Doran 2017). Each symbol in a mathematical statement realizes a property.iii For 

example the equation 𝑉 = 𝐼𝑅 describes properties of electricity going through a conductor 

(known as Ohm’s law). This equation involves symbols where there may be more or less 
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voltage (V), more or less current (I) or more or less resistance (R). The equation thus 

construes variation that occurs in the world. 

 

Importantly, placing these symbols into an equation indicates that these properties are not 

independent. For any particular instance, not every possible value is available for each 

symbol. Rather, the equation specifies a set of relationships between each of these symbols 

whereby if there is a change in the value of one symbol, it will likely affect all the others. For 

example in 𝑉 = 𝐼𝑅, if I (the current) was to increase, then either V (voltage) would also need 

to increase, or R (resistance) would need to decrease, or both. Similarly, if V were to increase, 

then either I or R or both would also need to increase; and if R were to increase then either V 

would increase or I decrease or both (see Doran 2018: 88–96). As far as field is concerned, 

Doran and Martin (chapter 5, this volume) term these relations between properties 

interdependency relations. These interdependencies greatly expand the meaning potential of 

science. In the first instance, by involving properties, they allow scientific fields to construe 

degrees of gradation in ways that activity and taxonomy cannot. Secondly, by specifying 

definite interdependencies between these properties, they offer a means for describing the 

effects of a change in any particular property. Put another way, through the equation 𝑉 = 𝐼𝑅, 

physics is able to account for there being more or less voltage, more or less current and more 

or less resistance, and it is also able to precisely describe the effect of a change in voltage on 

the current or resistance of a conductor. By virtue of establishing interconnections between 

properties, mathematics also contributes to strengthening the semantic density of knowledge. 

 

Mathematical equations can be organized into two key genres that deal with different aspects 

of scientific knowledge. These genres are known as derivations, which develop new relations 

between symbols, and quantifications which work to quantify symbols (Doran 2017, 2018). 
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Derivations are concerned with deriving new equations from previously known ones. In New 

South Wales, Australia, they tend to appear in physics in the later years of secondary school. 

For example in the following derivation from a secondary school student exam response, the 

student derives a new equation for W (work) (crudely, the energy associated with a force) in 

response to a question asking about the work needed to move a satellite from earth to an orbit 

altitude. Note that in the final equation, the W on the left side of the = is elided by convention 

in mathematical texts (Doran 2018: 69-72): 

 

𝑤𝑜𝑟𝑘 = ∆𝐺𝑃𝐸 = 𝐺𝑃𝐸𝑓 − 𝐺𝑃𝐸𝑖  

∴ 𝑊 = −
𝐺𝑚1𝑚2

𝑟𝑓
− (−

𝐺𝑚1𝑚2

𝑟𝑖
) 

= 𝐺𝑚1𝑚2 (
1

𝑟𝑖
−

1

𝑟𝑓
) 

 

The student begins by stating an equation that is assumed at this level, namely that work is 

equal to the change in gravitational potential energy (∆𝐺𝑃𝐸, meaning roughly the change in 

energy associated with moving between different positions in the gravitational field of earth). 

From this initial relation, the student then inserts sets of other known relations – such as the 

fact that the change in gravitational potential energy (∆𝐺𝑃𝐸) is equal to the difference 

between the final gravitational potential energy (𝐺𝑃𝐸𝑓) and the initial gravitational potential 

energy (𝐺𝑃𝐸𝑖), and that gravitational potential energy itself is equal to 
𝐺𝑚1𝑚2

𝑟
 (glossed as the 

gravitational constant G, multiplied by the mass of the satellite (𝑚1), multiplied by the mass 

of the earth (𝑚2), all divided by the distance between the satellite and the centre of the earth 

(r)). In the final line, the student rearranges the equation to simplify it for calculations further 
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along in the text. This derivation brings together a complex network of technical meanings 

and relates them precisely in terms of their interdependencies. 

 

The specific relations in this derivation are not important for our discussion. What is 

important is that through the manipulation of mathematical symbolism the student is able to 

move from one set of relations, 𝑤𝑜𝑟𝑘 = ∆𝐺𝑃𝐸, to a new set of relations 𝑤𝑜𝑟𝑘 =

𝐺𝑚1𝑚2 (
1

𝑟𝑖
−

1

𝑟𝑓
). In effect, the student has established new sets of interdependencies in the 

field; they have established relations not previously assumed (at this level, or at least 

logogenetically in this text), and in doing so, they have more tightly integrated the technical 

meanings of physics. In terms of LCT Semantics, derivations function to strengthen the 

semantic density of the discipline. They enable new relations to be established, which 

integrate an increasingly wide range of technical meanings. This means that any particular 

meaning specified in the derivation can now resonate out to all other meanings mentioned. 

But more than this, each term can be linked to other, unstated technical meanings by virtue of 

their relation any other symbol that is mentioned. This is powerful means of strengthening 

semantic density, and one that appears to be increasingly relied upon as students move into 

higher levels of physics. 

 

A little before derivations are introduced, students become familiar with another genre of 

mathematics known as a quantification. Where derivations build new, previously unknown 

relations, quantifications measure a particular property by numerically quantifying it. In 

terms of field, Doran and Martin (chapter 5 of this volume) refer to the numerical 

measurement of properties as gauging. An example of this can be seen in the student exam 

response immediately following the derivation discussed above. Drawing on the final result 
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of the derivation, the student inserts a set of numbers given in the question to calculate the 

work done in a particular situation: 

  

 

[𝑊] = 𝐺𝑚1𝑚2 (
1

𝑟𝑖
−

1

𝑟𝑓
) 

= 6.67 × 10−11 × 1428.57 × 5.97 × 1024 (
1

6 380 000
−

1

6380000 + 355000
) 

≑ 4699722327 

≑ 4.70 × 109 J (3 sig fig) 

 

Here, through numerous steps (detailed in Doran 2018), the student concludes that the work 

done is approximately 4.70 × 109 Joules (~ 4.7 billion Joules). What is significant about this 

text is that the quantification has enabled the student to relatively precisely measure a specific 

instance of a property. It has, in other words, taken the relatively generalized relations given 

in the symbolic equations and applied them to a specific situation. The quantification genre 

has moved the text from the relatively weak semantic gravity descriptions of general relations 

between properties in physics, to relatively strong semantic gravity measurements of an 

individual property tied to a very specific situation. 

 

The two mathematical genres, derivation and quantification, thus enable students to 

strengthen semantic density and strengthen semantic density – to build theory and to link this 

with the empirical world. Symbolic equations such as V=IR are not tied to any particular 

instance. Rather, they describe abstracted relations that encapsulate an innumerable number 

of instances. In this sense, they maintain relatively weak semantic gravity. At the same time, 

they realize a definite set of technical relations between highly technical symbols and so 
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involve relatively strong semantic density. Symbolic equations can thus be positioned in the 

rhizomatic code (SG–, SD+). Derivations progressively pull together more and more relations 

between an ever-widening number of technical symbols, but they do so in a way that is not 

heavily tied to any particular context or situation – they remain relatively generalized. In this 

sense, derivations strengthen semantic density of the field, while having little effect on 

semantic gravity.iv Derivations can therefore be described as strengthening semantic density 

within the rhizomatic code (moving rightwards on the semantic plane). On the other hand, 

quantifications move texts from relatively weak semantic gravity relations that describe a 

wide range of phenomena to measurements tied specifically to a single instance. This means 

they significantly strengthen semantic gravity of the text. At the same time, they do this 

without decreasing the complexity of this knowledge. Moving from [𝑊] = 𝐺𝑚1𝑚2 (
1

𝑟𝑖
−

1

𝑟𝑓
) 

to 𝑊 ≑ 4.70 × 109 J (3 sig fig) does not move us into the realm of everyday, common-sense 

meanings. The meanings maintain relatively strong semantic density by virtue of the fact that 

the meanings being quantified (i.e. the units of measurement and the organization of this 

measurement) are all highly technical and resonate out to the much wider disciplinary 

knowledge of physics. But they do so while significantly strengthening semantic gravity. In 

this sense, quantifications enable mathematics to move from rhizomatic codes into worldly 

codes – to move from theoretical to empirical (rather than from theory to the ‘everyday’). 

This shows that the description of physics as a relatively ‘abstract’ discipline (e.g. Kolb 

1981) misses a key component of its knowledge, namely that it enables increasing 

complexity of knowledge while shifting from ‘abstract’ theory to grounded empirical 

measurements. These movements in semantic gravity and semantic density through 

mathematics are shown in Figure 7.3. 
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Figure 7.3. Movements in the semantic plane through mathematics 

 

For students learning this knowledge, the use of mathematics complements the trained gaze 

developed in language. In addition to the movements shown in language from a prosaic code 

(SG+, SD–) to a rhizomatic code (SG–, SD+), the discipline emphasizes the importance of 

both continually strengthening semantic density within the rhizomatic code and being able to 

reach down to the empirical (worldly code or SG+, SD+), without moving into the common-

sense. This has two effects. First, it emphasizes regular movement: the scientific gaze it is 

exhibiting is not one of static technicality or abstraction but of constant movement between 

the everyday, the theoretical and the empirical. Second, it emphasizes the utility of theoretical 

knowledge in terms of its ability to reach down and make precise predications about and 

descriptions of the empirical world. Such movements are vital for conceptualizing new 

situations from a scientific viewpoint. 
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This raises the question of how empirical meanings (SG+, SD+) can reach back to the 

theoretical meanings (SG–, SD+). We have seen that mathematics enables students to reach 

toward empirical description by quantifying individual properties but we have not yet seen 

how physics can use empirical measurements to change theory. In terms of semantic gravity, 

mathematics enables physics to strengthen semantic gravity (and to move from rhizomatic 

codes to worldly codes) but it offers no way at this stage to weaken semantic gravity again (to 

move back from worldly codes to rhizomatic codes). To deal with this issue, physics brings 

in images – specifically graphs. 

 

KNOWLEDGE THROUGH IMAGE 

 

Images occur throughout science (Parodi 2012, Lemke 1998). They enable a large number of 

meanings to be brought together and presented in a single, synoptic snapshot (Doran 2019, 

Martin et al. 2021). We can see this in the diagram in Figure 7.4, from the same student exam 

response as the mathematical examples above. In this question, the student was asked to 

Draw a labelled diagram of the vacuum tube used by Thomson to calculate the q/m ratio of 

electrons. 
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Figure 7.4. Diagram of an experimental apparatus 

 

From the perspective of field, the diagram depicts a compositional taxonomy, in which each 

component is positioned as a part of the apparatus (the whole). However the diagram does 

not just present the various parts without any sense of how they come together to make the 

whole, what Kress and van Leeuwen (2006) call an unstructured analytical image. Rather, 

the components are spatially arranged in relation to one another – known as a spatially 

structured analytical image. In terms of the field relations of Doran and Martin (chapter 5, 

this volume), this means each component of the image realizes two distinct meanings: its part 

within a compositional taxonomy and its spatial position in relation to all the other parts in a 

spatial array.v The image also depicts activity through the dotted line labelled centre read 

cathode rays. Although there is no arrow or other overt indicator of a vector, the linear 

arrangement of the terms cathode and anode – as technical meanings in this field – are 

enough for an informed reader to understand the movement of the cathode rays is from left to 

right. 

 



 29 

This diagram thus integrates three distinct dimensions of field: a compositional taxonomy 

incorporating each part of the apparatus; a spatial array that arranges the parts of the 

apparatus in relation to one another; and an activity involving a cathode ray that moves 

through the apparatus. It is difficult for either language or mathematics alone to bring 

together this wide range of meaning in one snapshot. Indeed this is one of the key affordances 

of images: they are able to pull together a large number of complementary meanings in a 

synoptic ‘eyeful’. Diagrams in this sense are a key resource for packaging up multiple 

meanings to be read and viewed together. In terms of LCT, they offer the potential for 

significantly stronger semantic density in a way that complements that of language and 

mathematics. 

 

As students move further into physics study, these diagrams are typically complemented by 

graphs. Graphs offer a relatively unique affordance in physics in comparison to the other 

resources we have seen so far and appear to be especially prevalent as students engage more 

deeply with experimental investigations. In terms of their knowledge-building potential, 

graphs complement mathematical quantifications by enabling a more flexible interaction 

between empirical measurements and more abstract theory. We can see this by exploring 

Figure 7.5. This figure displays a question from the same high school student exam response 

as the diagram and the mathematical examples above. The prompt includes a table of 

measurements for Resistance and Temperature of a wire. The question asks the student to: (1) 

plot these values on the graph (shown by the ‘x’s on the graph); (2) draw a line of best fit 

(that generalizes across the ‘x’s, shown by the line labelled LOBF); and (3) use this line of 

best fit to estimate the resistance of the wire at 30ºC (shown below the graph). 
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Figure 7.5. Graph and questions in a senior secondary school examination 

 

From the perspective of field, the graph is organized around two properties presented on the 

axes (Resistance and Temperature) which are given measured values in the table above the 
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graph. The first task of the student is to take these measurements in the table and plot them on 

the graph (shown by the ‘x’s on the graph). From the perspective of LCT Semantics, these 

plotted measurements show relatively strong semantic gravity. Each point describes a very 

precise instance that cannot be generalized to any other. But, like the numerical 

measurements in quantifications, they also exhibit relatively strong semantic density as they 

signify the intersection of two technical properties and are measured with the particular units 

of these properties (Ohms for Resistance, Degrees Celsius for Temperature). 

 

The next step for the student is to draw a ‘line of best fit’. This involves generalizing across 

the plotted points to draw a line that ‘best fits’ each of the values. In this case, this is a 

straight line drawn from about six degrees Celsius on the temperature scale to the left, up to 

the about 37 degrees in the top right. Like mathematical equations, this line realizes a general 

interdependency between properties. It shows that when resistance increases, so does 

temperature (and vice versa). Similarly, this line has significantly weaker semantic gravity 

than the individual plotted points. Rather than being tied to any actual instance, the line 

develops a more generalized description. Indeed, the line does not intersect precisely with 

any of the measured points. Drawing a line of best fit weakens semantic gravity such that the 

relations it describes are not dependent on any particular instance or context. 

 

By shifting between measured points and generalized lines of best fit, graphs can be used to 

shift from stronger semantic gravity to weaker semantic gravity while maintain relatively 

strong semantic density. They thus complement mathematical quantifications by allowing for 

students to shift from the worldly code back into the rhizomatic code. They enable a shift 

from the ‘empirical’ back up to the ‘theoretical’. 
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An important feature of images is that they do not insist on a definite reading path (Bateman 

2014). In the case of graphs, this means students do not just have to move from measured 

points to generalized lines (from stronger to weaker semantic gravity). They can also use the 

generalized line to predict specific instances. Indeed this is the third task the student is asked 

to do, when question (a) says to estimate the electrical resistance of wire at 30º C. To answer 

this question, the student would have to find where the line of best fit is at 30º C, and ‘read 

off’ the value of the Resistance at this point. In this example, the student has done this by 

drawing two dotted lines, one vertical line at 30º Celsius, and then one horizontal line at 

around .1285 Ohms Resistance. Below the graph, the student then rounds this up to 0.129 

Ohms. In terms of semantic gravity, this displays a movement back from weaker semantic 

gravity to stronger semantic gravity. The student begins with the generalized description 

shown by the line of best fit and uses this to make a prediction of a specific measurement. 

Although this is an estimation, the prediction is strongly dependent on a context where the 

wire is 30ºC, and so it displays relatively stronger semantic gravity. 

 

This example illustrates how graphs enable movements back and forth between stronger 

semantic gravity and weaker semantic gravity. This affordance makes it a key tool for 

organizing the knowledge of physics (and many other disciplines). Figure 7.6 illustrates this 

movement. Where mathematical derivations enable movements within the rhizomatic code, 

and quantifications organize one-way trips from the rhizomatic code to the worldly code, 

graphs give opportunities for shifts back and forth – what Maton and Howard (2018) term 

‘return trips’. 
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Figure 7.6. Movements in the semantic plane through graphs 

 

 

MULTIMODAL KNOWLEDGE 

 

We can now return to the original question of this chapter: what knowledge do students need 

to learn in order to be successful in science? In the first instance, they need to understand the 

technical content meanings of the discipline. From the perspective of field, this means 

marshalling various items, activities, properties, and their respective relations when 

necessary. As this chapter has shown, this necessarily implicates multiple semiotic resources. 

Mathematics is able to bring together rich interdependencies between properties and measure 

these quantitatively; graphs are able to establish multiple arrays upon which measurements 



 34 

can be ordered; and diagrams and language can integrate a wide range of different types of 

meaning, including taxonomy, activity and property. The content meanings of science are 

organized through the multimodal resources of science. 

 

In the second instance, students need to learn a particular way of seeing the world. This way 

of seeing the world does not simply involve technical discussions of abstract phenomena. 

More importantly, it involves moving between the ‘common-sense’ and the ‘technical’, the 

theoretical and the empirical. In terms of LCT Semantics, this means being able to move 

between a prosaic code (SG+, SD–) and a rhizomatic code (SG–, SD+), and between a 

rhizomatic code and a worldly code (SG+, SD+). Or, to put this another way, students need to 

be able to strengthen and weaken semantic gravity and semantic density independently and 

together. They need a way of seeing the world from various perspectives and shifting 

between these perspectives as needs arise. As mentioned above, what is at stake here is a 

trained scientific gaze. Being able to read and write particular the semiotic resources and 

field-specific meanings of science is not enough. Students need to be able to select and 

arrange these resources appropriately in potentially new scenarios. This means they need a 

way of understanding the organizing principles of the knowledge in any particular situation. 

For physics (and science more broadly), this necessarily involves using multiple semiotic 

resources. Language enables the common-sense to be repackaged as uncommon-sense (and 

vice versa); mathematics enables a steady increase in the complexity of meaning while also 

moving from the theoretical to the empirical; and images enable an integration of a wide 

range of meanings to increase complexity and movement back and forth between the 

empirical to the theoretical. In all, students must learn that scientific knowledge is 

multimodal. 
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i The semantic density and semantic gravity explored in this chapter are those associated with 

‘content’ meanings – technical procedures, logical reasonings, taxonomies etc. This is known 

as epistemic–semantic density and epistemic–semantic gravity (Maton 2014, Maton and 

Doran 2017b). This contrasts with axiological–semantic density and axiological–semantic 

gravity that explore meanings associated with values, political judgements, morals, aesthetics 

etc. 

ii These were previously called implication sequences (e.g. Martin 1992). However, following 

Hao (2015, 2020) ‘sequence’ is reserved for relations between figures in discourse semantics, 

and ‘implication’ will be reserved for one type of relation between activities in a field. The 

relationship between a larger activity and the smaller activities that constitute it is known as 

momenting (discussed in Doran and Martin, chapter 5 of this volume). 

iii More precisely, each symbol realizes an itemized property – a property reconstrued as an 

item. This is because they may be graded (like properties), but they can also be classified 

(like items). For example, one may have more or less E (energy) (interpreted as a property), 

but one may also distinguish between different types of energy, such as initial energy, Ei, 

final energy Ef and average energy Eav (interpreted as items in a classification taxonomy). See 

Doran and Martin, chapter 5 of this volume for discussion. 

iv It is possible that particular derivations may strengthen or weaken semantic gravity by 

either deriving a set of relations only applicable to more precise situations or conversely 

deriving more generalized relations to cover a wider set of phenomena. This would be a 

function of the particular derivation under study rather than all derivations in general. 

v More precisely, each element realizes a position along two spatial arrays, one vertical and 

the other horizontal. 


