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TARGETING SCIENCE

Successfully integrating mathematics into 
science teaching

Karl Maton 

… like trying to hit a bullet with a smaller bullet, whilst wearing a blindfold, riding a horse.
– ‘Scotty’, in Star Trek, 2009

Introduction

In his Opus Majus of 1267, Roger Bacon described mathematics as ‘the door and 
key’ to science. This has become an axiom of educational research into science and 
its constitutive disciplines.1 Mathematics is widely heralded as the ‘backbone’ of sci-
ence (Bing and Redish 2009: 1) and ‘deeply woven’ into its practice and teaching 
(Redish and Kuo 2015: 562). Science textbooks are shown to exhibit greater use of 
mathematics than those of other disciplines (Lemke 1998, Parodi 2012). Learning 
the ‘appropriate application’ of mathematical skills is said to be ‘a key part of the 
hidden curriculum in science’ (Quinnell et al. 2013: 814). Accordingly, the ability 
to integrate mathematical and scientific knowledge is viewed as an important sign 
of student progress (Redish 2017). In short, teaching and learning mathematical 
knowledge is a central issue for science education. However, just as widely acknowl-
edged is that integrating mathematics into science teaching poses persistent prob-
lems. Studies regularly proclaim that many students struggle with mathematics in 
science lessons and consequently become discouraged from continuing in science 
(Meli et al. 2016). Even students who have chosen further studies in science ‘often 
seem to see “maths” as a separate subject, a necessary evil … rather than an integral 
part of the discipline’ (Quinnell et al. 2013: 811).

A key aspect of the problem is said to lie with fundamental differences between 
the two disciplines. Scholars emphasize that mathematics when used within sci-
ence has ‘a different purpose – representing meaning about physical systems rather 
than expressing abstract relationships. It even has a distinct semiotics … from pure 
mathematics.’ (Redish and Kuo 2015: 563). Integrating mathematics into science 
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education is thus not a simple matter of adding mathematical content to science les-
sons. Indeed, differences between the disciplines are such that students encounter-
ing a concept located within both bodies of knowledge often fail to recognize that 
they are exploring similar ideas in different contexts (e.g. Planinic et al. 2012). As a 
result, students may succeed in mathematics classes but ‘fail to use those same tools 
effectively’ in science classes, leaving educators ‘ distressed and confused’ (Redish 
2017: 25).

A challenge facing science education is thus to identify and develop teaching 
practices that select, recontextualize and integrate mathematical knowledge in ways 
that support the learning of scientific knowledge. Unsurprisingly, this has been the 
subject of a significant body of research. The resulting work has generated sugges-
tive ideas for learning specific mathematical skills for particular scientific problems. 
However, there is no overarching or integrating model for successful pedagogic 
integration. The problem ‘remains unsolved’ (Redish and Kuo 2015: 561). This 
chapter contributes towards the creation of such a model. It does so through by 
offering a fresh approach that complements existing frameworks by bringing to 
light issues that have hitherto been sidelined.

We begin by highlighting how research into science education offers significant 
insights into how students learn scientific ways of knowing but either neglects the 
forms of knowledge being taught or, where knowledge is discussed, treats ‘science’ 
and ‘mathematics’ as self-evident and unchanging. We argue that these constructions 
of the problem help underpin its persistence by ignoring knowledge, background-
ing teaching, and glossing over how ‘science’, ‘mathematics’ and their interrelations 
vary across contexts and change through the course of education. We then outline 
a framework that can complement existing approaches by bringing these issues into 
the picture. We introduce concepts from the Autonomy dimension of Legitimation 
Code Theory that conceptualize one aspect of the forms taken by knowledge prac-
tices and allow research to capture changing relations between changing forms of 
knowledge. Specifically, autonomy codes reveal the organizing principles underlying 
different knowledge practices, autonomy pathways trace changes in relations between 
knowledge practices over time, and targets embrace the contextual nature of what 
is viewed as ‘science’ and ‘mathematics’. We illustrate the value of these concepts in 
analyses of science classrooms drawn from a major study of secondary schooling. 
These show that different autonomy pathways taken by teachers enable or constrain 
the integration of mathematics into classroom science. We conclude by reflecting 
on the potential of the concepts of autonomy codes, pathways and targets to bring 
knowledge into the picture and to connect specific instances of pedagogic practice 
together within a general model of pedagogic integration.

Studying mathematics in science: blind spots

To integrate mathematics into classroom science requires teaching practices that 
appropriately select ideas from one body of knowledge (mathematics) and recon-
textualize that selection within a second selection of ideas from another body of 
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knowledge (science). A key issue is thus how different teaching practices shape 
the forms taken by ideas from those bodies of knowledge when they are brought 
together. Put simply, the question is: what teaching practices enable or constrain the 
integration of mathematical knowledge into scientific knowledge? These statements 
may seem unnecessary. However, studies of science education typically sideline both 
teaching practices and changing forms of knowledge. These blind spots arise from 
three assumptions that pervade the field: that knowledge equates to knowing, that 
education equates to learning, and that ‘science’ and ‘mathematics’ are self-evident.

Knowing and learning

The first assumption is that ‘knowledge’ comprises mental processes of under-
standing that reside ‘in the heads of persons’ (von Glasersfeld 1995: 1). Reflecting 
this ‘subjectivist doxa’ (Maton 2014: 3–14), research focuses almost exclusively 
on cognitive and affective ways of knowing. Knowledge as an object of study in 
its own right – one taking particular forms which have effects for bringing that 
knowledge together with other forms – is left out of the picture. Put another way, 
the assumption is that to analyze knowledge one must analyze ways of knowing. 
Rather than distinguish between students’ dispositions and what they are learning, 
as a precursor to exploring relations between knowing and knowledge, the only 
concern is the former. This assumption that knowledge is nothing but knowing 
is typically accompanied by a second assumption: that education is nothing but 
learning. When studying ‘ways of knowing’, research overwhelming focuses on 
student interactions, such as when solving a scientific problem. Teaching is rarely 
centre stage, if considered at all. Each of these assumptions thereby takes part of the 
picture for the whole.

This focus on learning and ways of knowing is illustrated by studies using the 
‘resources framework’ (e.g. di Sessa 1993, Hammer 2000, Redish 2014, 2017), an 
influential approach to physics education research. The framework explores ‘how 
our students think’ (Redish 2014), such as ‘the student’s perception or judgement 
(unconscious or conscious) as to what class of tools and skills is appropriate to bring 
to bear in a particular context’ (Bing and Redish 2009: 1). The concern is how 
‘cognitive resources’ are ‘activated in response to a perception and interpretation 
of both external and internal contexts’ (Redish and Kuo 2015: 573). Thus student 
perceptions are central – what their perceptions may be about, the forms taken by 
knowledge itself, is not analyzed. This subjectivism is thoroughgoing – everything 
is psychological. For example, the term ‘epistemology’ is used to refer not to inter-
subjectively shared field-level knowledge practices but rather to personal frames of 
individual understanding (e.g. di Sessa 1993, Hammer and Elby 2002). Accordingly, 
disciplines such as mathematics are viewed as comprising ‘ways of knowing’ (Redish 
2017) and studies of mathematics in science explore how students solve problems in 
order ‘to model their thinking’ (Bing and Redish 2009: 2).

Research using the ‘resources framework’ offers valuable insights into how stu-
dents learn ways of knowing. However, learning is not the sum of education, and 
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ways of knowing are not the sum of disciplines. Much remains missing from the 
equation. Such studies could provide a powerful basis for understanding the inte-
gration of mathematics into science lessons if they were complemented by analyses 
of teaching and analyses of knowledge. However, frameworks for bringing these 
issues into the picture are lacking in the wider field. Currently, whatever approach 
they are using, studies of science education tend to reduce knowledge to knowing 
and education to learning, generating blind spots in the overall field of vision.2 For 
example, studies of mathematics in science education draw on such frameworks as 
‘thinking dispositions’ to suggest that attributes such as curiosity can help students 
shift from ‘rigidity of mind’ to ‘fluid thinking’ that ostensibly supports successful 
integration (Quinnell et al. 2013). Similarly, studies adopting a ‘cognitive blend-
ing framework’ analyze how students draw on ‘mental spaces’ when combining 
physical and mathematical knowledge (Bing and Redish 2007). Thus, everything 
lies in the mind of the beholder. Similarly, teaching is sidelined. The implications 
of studies of student learning for how mathematics should be taught in science 
often take the form of afterthoughts, as if teaching is merely an epiphenomenon 
of learning. Typically, such implications simply comprise calls for the integration 
of mathematics into science in teaching (e.g. Meli et al. 2016; Planinic et al. 2012), 
leaving unsaid what teaching practices would support that integration. In short, 
the widely shared focus on ways of knowing (rather than also knowledge) and on 
learning (rather than also teaching) limits current understanding of how pedagogic 
practices enable or constrain the integration of mathematics into science within 
classrooms.

Knowledge as self-evident and invariant

Knowledge is not entirely absent from discussions of mathematics in science. As 
mentioned earlier, differences between their purposes and ‘ semiotics’ are said to 
contribute to student difficulties. Typically, science is described as condensing addi-
tional meanings into numbers and symbols and as requiring a different approach 
to interpreting mathematical results, reflecting i ts r elationship w ith t he e xter-
nal world (e.g. Bing and Redish 2009, Redish and Kuo 2015). Such attributes 
are also highlighted in discussion of the ‘affordances’ o f mathematical represen-
tation for science (e.g. Fredlund et al. 2012). In systemic functional linguistics, 
work has shown how mathematics ‘multiplies’ meanings in relation with language 
and images (Lemke 1998), offering additional resources for construing scientific 
knowledge (O’Halloran 2010). More recently, Doran (2018) has brought together 
systemic functional linguistics with Legitimation Code Theory (LCT) to identify 
key mathematical genres in school physics and explore the role these play along-
side language and images as physics progresses through school. Studies using LCT 
on its own have also explored forms of scientific k nowledge ( including m ath-
ematical symbols) involved in teaching and assessment in terms of differences in 
their complexity and context-dependence (Georgiou et al. 2014; Blackie 2014; 
Conana et al. 2016).
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What is left open, however, is the question of identifying ‘mathematics’ and ‘sci-
ence’. To analyze integration in a classroom requires determining which knowledge 
is ‘mathematics’, which knowledge is ‘science’, and when a specific idea or practice 
has been recontextualized from one into the other. However, existing studies typi-
cally describe content, such as the formula or problem being discussed by students, 
and simply state what is ‘mathematical’ and what is ‘scientific’ (e.g. Meli et al. 2016), 
as if self-evident. Alternatively, discussions of the nature of ‘science’ or ‘mathematics’ 
make claims about each discipline as a whole, as if homogeneous and unchang-
ing. That these ways of constructing knowledge are problematic flows from two 
uncontentious commonplaces. First, however distinctive the bodies of knowledge 
populating their intellectual fields might be (and this is debatable), the manifestations 
of ‘science’ or ‘mathematics’ in a specific classroom cannot be assumed. Which knowl-
edge from an intellectual field is selected, recontextualized and enacted as curricula, 
and which knowledge from a curriculum is selected, recontextualized and enacted 
in classroom pedagogy varies geographically, institutionally and through the stages 
of education.3 Put simply, the knowledge practices comprising ‘science’ and ‘math-
ematics’ are not necessarily the same in two classes in a school, let alone in different 
schools, years of study, states or countries. Second, at what stage of education specific 
knowledge practices from ‘mathematics’ are integrated into and become ‘science’ is 
not universal. What has already been integrated into ‘science’ in one classroom may 
remain separate ‘mathematics’ in another classroom. In short, what is ‘science’ var-
ies between classroom contexts and changes through education, the ‘mathematics’ 
drawn on when teaching ‘science’ varies and changes, and the degree to which that 
‘mathematics’ has been transformed into ‘science’ also varies and changes. Classroom 
‘science’ and ‘mathematics’ are two variable and changing bodies of knowledge 
whose interrelations are themselves situational and mutable. They are anything but 
self-evident, homogeneous or unchanging – thus our liberal use of quote marks. To 
simply state that specific ideas are ‘science’ or ‘mathematics’ is to beg the question 
of how that is determined.

Addressing the question is not easy. It requires avoiding a false dichotomy 
between essentialism and relativism that continues to bewitch education research 
(Maton 2014: 1–22). On the one hand, universalizing claims about ‘science’ and 
‘mathematics’ without a limiting context (such as ‘science in this classroom’) can 
lead to essentialism that treats their properties as homogeneous and invariant. On 
the other hand, insistence on the contextual limits of any definitions (or offering no 
more than ‘science in this classroom, at this moment’) can slide into relativism that 
treats ‘science’ or ‘mathematics’ as an endless flux. The former generates overgener-
alized claims that are unhelpful for analyzing empirical data; the latter leads to the 
banal conclusion that subject areas are constructed, contested and fluid, paralyzing 
the possibility of analysis. As yet, research into science education has not steered a 
course between this Scylla and Charybdis. However, without facing squarely the 
question of distinguishing knowledge practices, empirical studies can only continue 
creating a series of context-bound models of specific instances. The wider issue of 
pedagogic integration will remain unsolved.
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Seeing into the blind spots

Assuming that knowledge is only knowing, that education is only learning, and 
that disciplinary knowledges are self-evident generates blind spots. It is difficult to 
develop pedagogic practices that integrate mathematics into science lessons so long 
as teaching practice and both forms of knowledge are not analyzed. Existing insights 
into how students learn ways of knowing thus need to be complemented by: (i) 
studies of teaching practice; (ii) concepts that make visible the forms of knowledge 
practice being taught and learned; and (iii) a means of enacting those concepts 
that captures the variant and contextual nature of ‘science’ and ‘mathematics’.4 The 
first requires a shift of empirical focus. The second can be addressed by drawing 
on Legitimation Code Theory, a framework that reveals the organizing principles 
of knowledge practices. The third is trickier – it is akin to how Scotty described 
transwarp beaming in the motion picture Star Trek: ‘like trying to hit a bullet with a 
smaller bullet, whilst wearing a blindfold, riding a horse’. It needs to account for two 
changing phenomena (what is ‘science’ and what is ‘mathematics’) whose relations 
are also changing (through different degrees of separation and integration). We now 
turn to a means for doing so.

Autonomy

Legitimation Code Theory or ‘LCT’ is a framework for researching and shaping 
practice. It begins from the notion that there is more to what we say or do than 
what we say or do. In other words, the meanings of practices are not exhausted by 
their content; practices are also ‘languages of legitimation’ or criteria for measur-
ing achievement (Maton 2014). In short, what we say or do express principles 
of legitimacy or ‘legitimation codes’. LCT comprises several dimensions or sets of 
concepts that explore different aspects of legitimacy (Maton 2016). Central to each 
dimension are concepts for analyzing the organizing principles underlying practices, 
dispositions and contexts as a particular species of ‘legitimation code’. In terms of 
our needs here, these concepts bring knowledge into the picture by revealing the 
organizing principles generating its various forms. The dimension most directly rel-
evant to exploring integration is Autonomy, which focuses on relations between sets 
of practices (such as subject areas) and conceptualizes their organizing principles as 
autonomy codes. We shall first define the concepts, then discuss how they are enacted 
using translation devices and targets. For reasons that become clear, we begin rather 
abstractly, before concretizing the meanings of concepts.

Autonomy codes

The dimension of Autonomy begins from the simple premise that any set of prac-
tices comprises constituents that are related together in particular ways. Constituents 
may be actors, ideas, institutions, machine elements, body movements, etc.; how 
they are related together may be based on explicit procedures, tacit ways of working, 
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mechanisms, unstated orthodoxies, etc. The concepts of ‘autonomy codes’ explore 
how practices distinguish their constituents and their ways of relating from those 
of other practices. Put another way, the concepts examine how practices establish 
different degrees of insulation around their constituents and the ways those con-
stituents are related together. These are analytically distinguished as:

	•	 positional autonomy (PA) between constituents positioned within a context or
category and those positioned in other contexts or categories; and

	•	 relational autonomy (RA) between the relations among constituents of a con-
text or category and the relations among constituents of other contexts or
categories.

Each may be stronger (+) or weaker (−) along a continuum of strengths, where stron-
ger represents greater insulation and weaker represents lesser insulation. Stronger 
positional autonomy (PA+) indicates that constituents of a context or category 
are relatively strongly delimited from constituents associated with other contexts 
or categories (strongly insulated positions); and weaker positional autonomy (PA–) 
indicates where such distinctions are less demarcated (weakly insulated positions). 
Stronger relational autonomy (RA+) indicates that the ways of relating constituents 
together are relatively specific to a set of practices (autonomous principles), and 
weaker relational autonomy (RA–) indicates that the ways of relating may be drawn 
from or shared with other sets of practices (heteronomous principles).

As shown in Figure 2.1, positional autonomy and relational autonomy are visual-
ized as axes of the autonomy plane. Varying their strengths independently (PA+/−, 
RA+/−) generates four principal autonomy codes:

FIGURE 2.1 The autonomy plane (Maton 2018: 6)
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	•	 sovereign codes (PA+, RA+) of strongly insulated positions and autonomous
principles, where constituents are associated with the context or category and
act according to its specific ways of working;

	•	 exotic codes (PA−, RA−) of weakly insulated positions and heteronomous prin-
ciples, where constituents are associated with other contexts or categories and
act according to ways of working from other contexts or categories;

	•	 introjected codes (PA−, RA+) of weakly insulated positions and autonomous
principles, where constituents associated with other contexts or categories are
oriented towards ways of working emanating from within the specific context
or category; and

	•	 projected codes (PA+, RA−) of strongly insulated positions and heteronomous
principles, where constituents associated with the specific context or category
are oriented towards ways of working from elsewhere.

These concepts help address the need to make visible the forms of knowledge 
being taught and learned. Put simply, the four codes state that what matters are: 
internal practices and principles (sovereign codes); other practices and principles 
(exotic codes); other practices turned to intrinsic purposes (introjected codes); and 
internal practices turned to other purposes (projected codes). To explore processes 
that occur through time, such as classroom practice, one can analyze the different 
pathways traced around the plane by successive autonomy codes. There is an 
unlim-ited number of potential pathways (see Maton 2018). In this chapter we 
discuss the two pathways illustrated in Figure 2.2: one-way trips that begin in one 
code and end in another code; and tours that begin in one code, move through other 
codes, and return to their originating code. We shall show that autonomy tours in 
teaching practice enable, and one-way trips constrain the integration of ‘mathemat-
ics’ into ‘science’. However, before doing so there remains the question of defining 

FIGURE 2.2  Examples of two autonomy pathways
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‘science’ and ‘mathematics’ in a way that systematically embraces their variant and 
contextual nature. This is achieved through translation devices and targets.

Translation devices and targets

Thus far we have described ‘autonomy codes’ in abstract terms and without specific 
examples. This allows the concepts to be enacted across a wide range of diverse 
phenomena. Doing so offers t he p ossibility o f r eaching b eyond d escriptions o f 
specific instances of classroom practice to generate a general model of pedagogic 
integration. However, it also means one must be clear how the concepts are mani-
fested within a specific object of study. In LCT this is achieved through ‘transla-
tion devices’ that relate concepts to data (Maton and Chen 2016). Table 2.1 is a 
generic translation device that relates autonomy codes to all forms of data. The device 
divides the continua of strengths for positional autonomy and relational autonomy 
into categories of progressively finer-grained levels of delicacy, from categories for 
stronger/weaker (target/non-target) through subcategories, use of which depends on 
the analysis.

To activate the device one asks: what constituents (practices, beliefs, ideas, actors, 
etc.) and what principles (purposes, aims, ways of working, etc.) are considered con-
stitutive of this context or category, here, in this space and time, for these actors? This 
gives a ‘target’. As shown in Table 2.1, target constituents embody stronger posi-
tional autonomy and all other, non-target constituents embody weaker positional 
autonomy; similarly, target principles embody stronger relational autonomy and all 
other, non-target principles embody weaker relational autonomy. These categories 
can be divided into subcategories by asking which target constituents and principles 
are considered core and which ancillary to the context or category, and which non-
target constituents and principles are considered associated or unassociated with the 
target. Asking the same basic questions again generates a third level comprising inner 
and outer forms of core and ancillary targets, and near and remote forms of associated 
and unassociated non-targets.

TABLE 2.1 Generic translation device (Maton 2018: 10)

PA/RA 1st level 2nd level 3rd level

target core inner

outer

ancillary inner

outer

non-target associated near

remote

unassociated near

remote
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Activating the device allows us to aim directly at the problem of defining ‘sci-
ence’ and ‘mathematics’. Rather than shying away from knowledge practices vary-
ing across contexts, the notion of ‘target’ makes that the starting point for analysis. 
This is best shown by a concrete example. Here we draw on a major study of how 
secondary school teachers select, assemble and enact knowledge in their classroom 
practice when teaching at Stage 4 (Years 7–8) and Stage 5 (Years 9–10) in three 
secondary schools in New South Wales, Australia.5 Data comprised videorecordings 
of lessons across whole units of study (6–8 hours each), interviews with teachers, all 
teaching materials, and student artefacts. In this chapter we shall discuss examples of 
classroom practice by two science teachers in Year 7 of secondary schooling.6

To enact ‘target’ first one considers whose view of the target to begin from, as other 
agents in a context (such as students in a classroom) may have different targets. A 
target is always someone’s or something’s conception of what makes a context distinc-
tive and thus in our analyses always accompanied by possessives (e.g. his/her/their 
targets). Here, reflecting our concern with teachers’ practices, we focus on their tar-
gets. Second, one must consider what level of their targets to examine. LCT concepts 
can be enacted at all levels of analysis; for example, a teacher’s targets may include 
an entire curriculum, a unit of study, a lesson, a task, and so forth. Reflecting our 
concern with how teachers attempt to integrate mathematics into science to meet 
the needs of the Stage 4 curriculum, our specific translation device has curriculum  
stage as its first level and unit of study as its second level.7 A s summarized in 
Table 2.2, in interviews and pedagogic materials the teachers identified their tar-
get content (PA+) as the Stage 4 science syllabus in New South Wales and their 
target purpose (RA+) as teaching students that content. Put simply, here: positional 
autonomy conceptualizes where the ideas expressed in classroom practice are drawn 
from, the Stage 4 science syllabus (PA+) or elsewhere (PA–); and relational autonomy 
conceptualizes the purposes for which they being expressed, teaching and learning 
that science syllabus (RA+) or other purposes (RA–). Interviews and pedagogic 
materials further identified the teachers’ core targets (++) as the specific science unit 
being taught, with other units in Stage 4 science considered ancillary targets (+). 

TABLE 2.2 Simplified specific translation device for this analysis

PA/RA 1st level In this analysis: 2nd level In this analysis:

target
New South Wales 
Stage 4 syllabus 
for subject area

core specific unit in target

ancillary other topics or years in 
target

non-target
other contents 
or purposes

associated other educational 
knowledge

unassociated knowledge from beyond 
education
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(Their inner-core targets comprised the content points they created for each specific 
lesson). In terms of non-targets, teachers viewed other educational knowledge (such 
as other subjects or other Stages and levels of education in science) as associated (–) 
with their target, and knowledge from beyond education as more distanced or unas-
sociated (– –).

By ‘targeting’ analysis we can identify ‘science’ as it is constructed in the spe-
cific context under study, avoiding universalizing essentialism. By translating that 
particular set of empirical ideas and practices into ‘autonomy codes’, we can move 
beyond context-bound, endlessly varying descriptions of difference, avoiding rela-
tivism. We can both embrace the specificities of each context and compare practices 
across different contexts, capturing the endless forms most wonderful that are ‘sci-
ence’. Moreover, targeting ‘science’ allows us to analyze the movement of ideas and 
practices between subject areas as they are recontextualized and integrated. Given 
that the ‘target’ depends on the object of study, no single idea, practice, belief, etc. is 
always and everywhere the same code. A practice may be moved around the plane; 
for example, in our discussion of an autonomy tour below, ‘graphing’ is successively 
constructed as an exotic code (as mathematics content for mathematical purposes), 
an introjected code (mathematics content for learning science), and a sovereign 
code (science content for learning science).

We can now begin to explore what teaching practices enable or constrain inte-
gration of ‘mathematics’ into ‘science’. To illustrate how, we shall analyze classroom 
practices by two teachers (mentioned above) from Year 7 schools teaching the same 
unit from the same state curriculum. The difference between the examples lies in 
the autonomy pathways traced by their teaching practice. In the first example, the 
teacher fails to integrate mathematics into science. He leads students on a one-way 
trip out of ‘science’ into an activity he describes as ‘maths’ that remains segmented 
from his target knowledge. In the second example, a different teacher takes students 
on an autonomy tour that integrates non-target ‘mathematical’ knowledge about cre-
ating graphs into her target ‘science’ knowledge about Earth’s seasons.

One-way trip from science ‘to do some maths’

Our example of teaching that fails to integrate ‘mathematics’ into ‘science’ com-
prises a distinct phase of activity spanning an entire lesson of over 50 minutes. The 
teacher’s core target for the wider unit, as later described in an interview, is:

to teach them [students] about the universe and our solar system and what’s 
beyond Earth. Some of them didn’t quite understand the relationships in the 
universe so we have to make them clearer for them.… How we get night and 
day or how you get the different seasons.

This reflects a ‘sub-strand’ of the state curriculum for Year 7 science entitled ‘Earth 
and space sciences’, which is ‘concerned with Earth’s dynamic structure and its place 
in the cosmos’ (NESA).8 In the lesson discussed here, the teacher tells students they 
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are going to make sense of the scale of the solar system, but quickly shifts classroom 
practice into using numbers to calculate percentages, detached from learning about 
the science content. This takes students on a one-way trip from the teacher’s sovereign 
code into an exotic code, a pathway that does not return to his target content or 
target purpose. After 52 minutes he draws the ‘maths’ activity to a close by declaring: 
‘I know it’s confusing’.

Pathway into ‘a lot of numbers’

The teacher begins the lesson by showing students a short YouTube video entitled 
‘The smallest to the biggest thing in the universe’. Starting from hypothesized enti-
ties in quantum physics (such as strings), the video zooms outwards through ever-
larger phenomena to end with the known galaxy. He then segues to the activity that 
will consume the rest of the lesson:

TEACHER So, as you saw, some of those distances and some of those sizes don’t 
really mean a lot to us, because we just can’t fathom the distances involved, 
okay? So some of the other distances, especially in our solar system, are the 
same. So what we’re going to do is, we’re going to put the distances and the 
sizes relative to Earth. Okay? So we’re going to put all the planets and the dis-
tance to the Sun and we’re going to make them relative to the Earth.

At this point, the intended classroom practice is to explore content about the solar 
system (stronger positional autonomy) for the purpose of understanding the solar 
system (stronger relational autonomy); i.e. within the teacher’s core target – deep 
inside his sovereign code.

The teacher then directs students to ‘draw up a table’ of ‘seven columns and 10 
rows’ and shows a PowerPoint slide of a table, to which he adds two column titles 
by hand on the whiteboard, reproduced here as Table 2.3. He tells the class to ‘copy 
down this information if you haven’t already got it’. After reminding students they 

TABLE 2.3 Table provided by teacher for activity

Radius 
(km)

Distance from 
the sun (km)

Time to 
orbit around 
the sun

Time taken to 
turn once on its 
axis

Diameters 
as % of 
Earths

Distance 
as % of 
Earths

The Sun 695800
Mercury 2439.7 57910000 88Ed 58d15h30m
Venus 6052 108200000 224.7Ed 116d18h0m
Earth 6371 149600000 365.25Ed 1d
Mars 3390 227900000 686.97Ed 1d0h40m
Jupiter 69911 778500000 12Ey 9h56m
Saturn 58232 1433000000 29Ey 10h39m
Uranus 25362 2877000000 84Ey 17h14
Neptune 26422 4503000000 165Ey 16h06m
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had written down diameters of planets and their distances from the sun in a previ-
ous lesson, he explains:

TEACHER  I want you to add this information, these two [points to third and 
fourth titled columns], because these two are relative to the Earth. … Since 
we’ve already got the information just do four columns, because we’re going 
to do some maths.

That the teacher declares ‘we’re going to do some maths’ does not by itself indicate 
a shift beyond ‘science’ into non-target knowledge. For example, ‘maths’ could refer 
to procedures or ideas he has previously integrated into his target – already scien-
tized mathematics, so to speak. Similarly, calculating percentages is not necessarily 
beyond his target. As we shall see in our second example, no practice is always a 
specific code. To identify the autonomy code, one must leave aside assumptions of 
what is ‘science’ or ‘maths’ and begin from the teacher’s target. This he described, 
and teaching materials revealed, as the Stage 4 science syllabus. A strand of this 
syllabus entitled ‘science inquiry skills’ includes for Year 7: ‘Summarise data, from 
students’ own investigations and secondary sources, and use scientific understanding 
to identify relationships and draw conclusions based on evidence’.9 So, calculating 
diameters and distances from the sun of planets as percentages of those of Earth 
could potentially sit within the teacher’s target. However, the syllabus emphasizes 
that such ‘science inquiry skills’ give students ‘the tools they need to achieve deeper 
understanding of the science concepts’ – they must be ‘closely integrated’ with 
learning the ‘science knowledge’ outlined in a strand entitled ‘Science understand-
ing’. This strand includes having ‘students view Earth as part of a solar system, which 
is part of a galaxy, which is one of many in the universe, and explore the immense 
scales associated with space’. Thus, whether calculating percentages lies within the 
teacher’s target depends on whether he integrates its content or purpose with view-
ing Earth as part of a solar system and exploring the immense scales of space. As 
the teacher stated at the outset, this was his intention. However, as we shall see, in 
practice he does not relate the activity to any such ‘science understanding’.

Instead, as illustrated by Figure 2.3, the teacher quickly shifts the task into an 
exotic code in which non-target content is used for non-target purposes. He weak-
ens positional autonomy by disconnecting the contents of the table from his target 
topic. For example, he describes its contents as ‘information’ five times in just the 
first minute: ‘copy down this information … just use your information … add 
this information … you’ve already got the information … we’ve already got the 
information’. At the same time he weakens relational autonomy by describing the 
purpose as ‘to do some maths’ without relating this either to procedures previously 
integrated into ‘science’ or to learning new syllabus content.10 For example, when 
responding to questions from students, he states:

TEACHER  Just do the last two columns and then add two more because we’re 
going to do some maths in the last two.
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Following his instructions, some students copy numbers from the table while a 
series of students ask the teacher which numbers they should copy. This concern 
with numbers as only numbers continues when, after eight minutes, he addresses 
the whole class:

TEACHER  Alright, do we know how to work out the percentage for ….? So 
which one do we have to divide by? [Student name], what do you think? To 
work out Mercury, the percentage compared to Earth? What do you think we’d 
have to do?

STUDENT  Divide it by a hundred?
TEACHER  No, no, no. Alright. What we do [draws on whiteboard:

Mercury
Earth  × 

100]. Alright, so distance percentage [pointing to last column title] is the dis-
tance from the sun. Okay? So to work out the percentage, you divide each of 
the planets by the Earth’s diameter.

Over the next 15 minutes the teacher repeats similar instructions to a series of 
individual students, each time describing what ‘information’ must be multiplied 
or divided to ‘give you a percentage’. When he mentions the names of planets, the 
teacher is referring to specific empty cells in the table – shown by physically point-
ing to the cell – rather than to planets. More often, the teacher refers to the content 
as ‘information’ or ‘number’, such as:

TEACHER  Divide that number [pointing to the table] by that number [pointing] 
for the distance; that number [pointing] by that number [pointing] for the 
diameter. Alright? That’s what you’re supposed to be doing.

FIGURE 2.3  Shift from sovereign code to exotic code
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The content is from neither the teacher’s target of the syllabus nor his core target 
of learning about the solar system; the purpose is to ‘work out the percentage’ or 
‘do maths’. The knowledge being expressed thus remains within an exotic code 
(Figure 2.3).

During the course of the activity some students ask questions that represent 
opportunities to relate the activity to the issue of grasping the scale of the solar 
system. For example, one student asks whether people are made of ‘planks’, another 
asks what is smaller than a ‘string’ (both mentioned in the earlier video), and a third 
asks ‘Are we made of stardust?’. The teacher’s responses – ‘No’, ‘Didn’t you watch 
the video?’, and ‘What do you think?’, respectively – do not connect to target con-
tent or turn the questions to his target purpose.

After 38 minutes the teacher asks students to call out numbers for cells in the 
column ‘Diameters as % of Earths’. He then raises the question: ‘What do these 
percentages actually mean?’. This is an opportunity to strengthen relational auton-
omy by turning these numbers to the purpose of viewing Earth as part of a solar 
system or exploring the immense scales involved, and an opportunity to strengthen 
positional autonomy by connecting the ‘information’ to knowledge about the solar 
system. A student suggests ‘A lot of numbers’, an answer that accurately reflects 
the exotic code characterizing the activity. The teacher leaves his own question 
unanswered. The class then repeats the pattern outlined above: students make cal-
culations (for the ‘Distances’ column), the teacher repeats similar instructions to 
students, and numbers are solicited from the class. Classroom practice stays in an 
exotic code. The activity is ended after 52 minutes by the teacher saying ‘I know 
it’s confusing’ and announcing that they will look at ‘day and night’ in the next 
lesson.

Summary: ‘That’s maths!’

The autonomy pathway traced by this lesson represents a one-way trip out of the 
teacher’s target of ‘science’ in order ‘to do some maths’. As portrayed by Figure 2.3, 
the knowledge expressed in classroom practice shifts from a fleeting sovereign code 
to a very long stay in an exotic code. As shown by the times given above, almost 
the entire ‘science’ lesson is ‘maths’. The teacher could have chosen to conduct this 
activity inside his sovereign code by closely integrating the numeric activity with 
his syllabus target. Instead, he chooses to project the activity as beyond his target, 
as doing ‘maths’ to ‘work out the percentage’. As we discuss below, this code shift 
is not necessarily antithetical to integrating this ‘maths’ into ‘science’. At any point 
during the lesson, the teacher could strengthen positional autonomy by connect-
ing to his target content or strengthen relational autonomy by turning non-target 
content (calculating percentages) to his target purpose. Instead, he keeps classroom 
practice in the exotic code: the content remains numbers and calculations, and the 
purpose remains using numbers to calculate other numbers. Thus, the shift to an 
exotic code does not integrate ‘maths’ into ‘science’. Late in the lesson, in response 
to a student declaring ‘This is hard, sir’, the teacher replies ‘That’s maths! We still 
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have to do maths in science’. However, this ‘maths’ is not ‘in science’ and so knowl-
edge of calculating percentages remains strongly segmented from knowledge of the 
solar system.

Autonomy tour integrating ‘mathematics’ into ‘science’

To illustrate how ‘mathematics’ can be integrated into ‘science’ we turn to a dif-
ferent teacher at a different school but teaching the same unit (‘Earth and space 
sciences’) at the same level (Year 7 secondary school). The example begins in the 
second lesson of a unit on the causes of Earth’s seasons, as students transform their 
results from a practical experiment into graphs. In the first lesson students had con-
ducted an experiment to explore the effect on temperature of the angle at which 
sunlight strikes the Earth’s surface. In groups, students used a lamp to represent the 
sun, and a wooden block to represent the Earth. Varying the angle of the lamp to 
the block (15, 30, 60 and 90 degrees), they recorded the temperature of the block 
at different times (initial, 2.5 minutes, 5 minutes) from an attached thermometer. 
Prior to the experiment each student had written a hypothesis of whether increas-
ing the angle would increase, decrease or have no effect on the temperature. The 
second lesson directly builds on this activity. The teacher begins by setting out her 
(inner-core) target:

TEACHER What we will be doing today is looking at those results, graphing the 
results and then talking about what it is that we were actually trying to model.

Over the next 35 minutes the teacher leads students on an autonomy tour through 
those activities: from her sovereign code (discussing their results), through an exotic 
code (recapping ‘graphing rules’), and an introjected code (applying those rules to 
graph their results), before returning to her sovereign code (by relating the resulting 
graphs to Earth’s seasons). As a result, the graphing activity becomes integrated into 
‘science’.

A tour through ‘graphing’

The teacher begins by recounting the experiment and then solicits students’ overall 
findings:

TEACHER So looking at your results there, who can give me a statement about 
what their results did?

STUDENT As the angle of the block increased, the temperature increased. 
TEACHER Fantastic. I love that. That’s a really great statement. Did someone get 

something different in their results?

The teacher thus begins deep inside her sovereign code. Both content (experiment 
modelling a factor in Earth’s seasons) and purpose (to learn about the results) are 
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located within her inner-core target for the lesson. After discussing the findings of 
several students, she announces:

TEACHER  Here [on the whiteboard] is your table that you should have had drawn 
up from the last lesson. We are going to graph… I want you to think about the 
graphing rules and start getting yourself ready for graphing.

As we emphasized, no activity is intrinsically a specific autonomy code. ‘Graphing’ is 
not necessarily non-target – ‘graphing’ can be mathematical or scientific. To deter-
mine autonomy codes we must consider the teacher’s target: the Stage 4 science 
syllabus. A strand entitled ‘science inquiry skills’ includes for Year 7: ‘Construct and 
use a range of representations, including graphs, keys and models to represent and 
analyze patterns or relationships in data’.11 Thus, graphing is potentially within the 
teacher’s target. However, as discussed in the previous example, the syllabus describes 
‘science inquiry skills’ as giving students ‘the tools they need to achieve deeper under-
standing of the science concepts’ by being ‘closely integrated’ with learning the ‘sci-
ence knowledge’ outlined in the syllabus strand ‘Science understanding’. This strand 
includes ‘how changes on Earth, such as day and night and the seasons, relate to Earth’s 
rotation and its orbit around the sun’. Thus, whether graphing lies within the teacher’s 
target depends on whether she integrates its content or purpose with learning about 
Earth’s seasons. Here, we shall show that she begins by separating graphing in terms 
of both content and purpose, then turns it to purpose, before connecting its content.

This tour begins with the teacher recapping her ‘graphing rules’ separately from 
Earth’s seasons. Continuing on from the preceding classroom quote, she says:

TEACHER  So, who can remind me about what the rules are for graphing?
STUDENT  Y versus X.
TEACHER  Y versus X. How do we know which one goes where?
STUDENT  The independent variable goes on one side.
TEACHER  The independent variable goes on one of them. Yes, that’s good.
STUDENT  And the dependent variable …
TEACHER  … goes on the other one. The thing that is the most regular, which 

is usually your IV [independent variable], goes on the X, and your DV 
[dependent variable] goes on the Y.

This recap embodies: weaker positional autonomy (PA–), as these ‘graphing rules’ 
are not related to Earth’s seasons; and weaker relational autonomy (RA–), as the 
purpose is recapping the ‘graphing rules’ rather than learning about Earth’s seasons. 
As portrayed in Figure 2.4, the teacher has shifted from deep inside her sovereign 
code to just inside an exotic code.12

Thus far, classroom practice traces the same pathway as the previous example. 
However, where that teacher remained within an exotic code for the entire lesson, 
this teacher does not stay for long. She quickly shifts the class into a third code by 
repurposing the knowledge of ‘graphing rules’:
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TEACHER  Now, in this experiment, who can tell me – there’s a little problem. 
Have a look at our data. Can you tell me which one goes on the X and which 
one goes on the Y?

One student suggests ‘the angle’ should go on the Y-axis, another suggests the X-axis, 
and the teacher asks students for the locations of ‘temperature’ and ‘time’. After a 
student exclaims ‘Wait! What?’, the teacher explains the problem:

TEACHER  So in this experiment we’ve got three sets of data, okay? So, this one’s 
going to kind of break the rules a tiny bit. The easiest way for us to do this is 
that you’re going to have […] ‘time’ on the X, ‘temperature’ on the Y, and four 
different lines. The four lines you’re going to draw is one line for 15 degrees, 
one line for 30 degrees, one line for 60 degrees and one line for 90.

The content of discussion – rules about locating variables on axes – remains weakly 
integrated with what the experiment reveals about Earth’s seasons and so embod-
ies weaker positional autonomy. However, the purpose is to create a graph that 
can show this knowledge, embodying stronger relational autonomy. As portrayed in 
Figure 2.5, this shifts classroom practice into an introjected code.13

This introjected code is maintained throughout the graphing activity. While 
students apply the adapted ‘graphing rules’ to their results, the teacher alternates 
between addressing the whole class and advising individual students; for example, 
to the class:

TEACHER  All right! Along the X-axis, there will be three values: the X-axis has 
your time on it. There will be a time for five minutes, there will be a time for 

FIGURE 2.4  Shift from sovereign code to exotic code
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two and a half, and there will be a time for ‘initial’, which we can call zero, zero 
minutes. Okay? …

Then (continuing straight on), she looks at a student’s workbook and asks:

TEACHER  Why is this word here?
STUDENT  ‘Angle’.
TEACHER  We are not doing ‘angle’ like that.
STUDENT  Oh, whoops!
TEACHER  Just follow what’s going on here. This is the X.
STUDENT  Okay.
TEACHER  Okay? So ‘temperature’ does not belong there. X along here is ‘time’. Y 

along here is ‘temperature’.

Discussion continues along these lines for the next 12 minutes while students draw 
their graphs. As these quotes illustrate, the content of discussion involves locating 
variables on axes, setting ranges for variables, sizing the graph, using symbols, label-
ling, evenly spacing intervals, creating a key for symbols, and avoiding overlapping 
lines. Content is thus not related to what the results of the experiment might reveal 
about Earth’s seasons: weaker positional autonomy. However, the purpose is to cre-
ate graphs which help show what the experiment might reveal about Earth’s season: 
stronger relational autonomy. As the teacher explains to the whole class: ‘This is a 
better way of presenting the data than it is to look at a table. … Straight away when 
you look at this graph, you can see which one has increased in temperature fastest.’ 
Graphing thus manifests here as an introjected code (Figure 2.5).

Once students have completed graphing, the teacher shifts classroom practice 
back to her sovereign code. Students write in their workbooks a ‘conclusion’ of 

FIGURE 2.5  Shift from exotic code to introjected code
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what their graphs show and whether this supports or refutes their previous hypoth-
esis and a ‘discussion’ of whether their results were consistent and expected, what 
errors occurred, how they could improve their experimental design, and what they 
could do to test the idea further. The teacher then leads a discussion of the graphs 
that continues this concern with what they reveal about the focus of the experiment:

TEACHER What did we learn? […]
STUDENT We learned that the steeper the angle, the hotter the temperature. 
TEACHER Good. The steeper the angle of the block, we got a greater increase in 

our temperature. Who can tell me why? Why did it get hotter? …
STUDENT Because the core of the block is closer to the light.
TEACHER Good. The middle part of the block, as you increase the degrees, makes 

it closer to the light. Good.
STUDENT Because it’s getting more direct rays when it’s on a higher angle as 

opposed to when it’s on …
TEACHER Good. When we have a higher angle, we have more of those light rays 

striking the block, and those light rays then can heat up the block more effec-
tively than the ones that are just skimming over the top.

This shifts the content and purpose to exploring the results of the experiment. 
The graphing activity has now been integrated with the experiment. The teacher 
then consolidates this sovereign code to integrate the experiment into discussion 
of Earth’s seasons. First, she emphasizes her target purpose – stronger relational 
autonomy:

TEACHER  Okay, but what’s the point in doing this? Are we really interested in 
whether or not blocks can heat up with a lamp?

STUDENT  No!
TEACHER  No? Who can remember the word I used to describe what this experi-

ment was? Starts with an ‘m’.
STUDENT  A model?
TEACHER  A model. Fabulous. This was a model. It was a model of the Earth and 

the sun.

Second, she explains differences between the model and reality and how those 
differences shape the experience of heat on Earth, content that embodies stronger 
positional autonomy:

TEACHER  Does the Earth change its angle?
STUDENTS  Yeah.
STUDENTS  No!
STUDENTS  It rotates.
TEACHER  It rotates – good. When the Earth rotates the angle changes. … When 

the Earth rotates, we change the angle that the sunlight is striking the Earth.
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The teacher then segues to an animation that shows the Earth rotating, sunlight 
striking the surface, and how this creates night and day. As portrayed in Figure 2.6, 
the teacher has shifted to content from the syllabus for the purpose of learning that 
syllabus – her sovereign code. The experiment and graphing activity are now inte-
grated into the wider discussion of Earth’s seasons.

Summary: separate, repurpose, integrate

Analysis of workbooks from this lesson suggests that students successfully trans-
lated their tables of experimental results into graphs and their graphs into conclu-
sions about the effects of the angle of sunlight on temperature. This is no simple 
feat. Studies of science education widely report that many secondary school and 
university students struggle with understanding and interpreting graphs (Planinic 
et al. 2012). Indeed, the students here were creating graphs from data. Moreover, the 
teacher is also laying foundations for students’ future learning. As she highlighted 
in an interview, her Year 7 students ‘have no experience with graphing for science 
or they’ve got no experience with drawing tables for science – we’ve really got to 
teach that stuff in the beginning, because then we expect them to follow it through’ 
subsequent years of school science.

In terms of the knowledge involved, this learning was supported by teaching 
which traced an autonomy tour from ‘science’ through graphing and back to ‘sci-
ence’. As shown by Figure 2.7, classroom practice went through:

	(1)	 the teacher’s sovereign code by discussing results of the experiment
	(2)	 an exotic code when discussing ‘graphing rules’

FIGURE 2.6  Shift from introjected code to sovereign code
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	(3)	 an introjected code when adapting those ‘rules’ to graphing results of the
experiment

	(4)	 the teacher’s sovereign code when translating graphs into conclusions about what
was modelled by the experiment

Given that graphing could be discussed in ways that locate it either within or 
beyond the teacher’s target, one question this pathway raises is why she chose to 
leave her sovereign code. Students had learned the ‘graphing rules’ in previous les-
sons, so the teacher could have treated them as part of her target – as already inte-
grated into ‘science’ – by relating them directly to the experiment’s result. However, 
this strategy would not have captured the distinct nature of this experiment – that 
there are three variables. By constructing the ‘graphing rules’ as an exotic code, the 
teacher keeps that knowledge separate from the specific ‘science’ content, allowing 
her to connect to ideas that students have already learned in a way that highlights 
how graphing will be different here. By separating this ‘mathematics’ from the ‘sci-
ence’, she is able to select ideas from the ‘graphing rules’, repurpose those ideas, and 
integrate their use into her target knowledge. Separation comprises a shift to an 
exotic code. Repurposing involves strengthening relational autonomy by turning 
the ‘rules’ to the purpose of graphing results from this experiment – an introjected 
code. Integration involves strengthening positional autonomy to translate the resul-
tant graphs into knowledge about Earth’s seasons – a sovereign code. In our previ-
ous example, leaving ‘science’ for ‘maths’ was a one-way trip that failed to integrate 
the ‘maths’ back into ‘science’. Here, leaving ‘science’ was a precursor to successful 
integration through an autonomy tour.

FIGURE 2.7  Autonomy tour with graphing results of an experiment
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Conclusion

A key challenge faced by research into science education is developing teaching 
practices that select, recontextualize and integrate mathematical knowledge to sup-
port the learning of scientific knowledge. We argued that existing approaches offer 
insights into student learning of ways of knowing but typically sideline teaching 
practice and the forms of knowledge being taught and learned. To help address 
these blind spots we offered a complementary approach centred on autonomy codes, 
pathways, and targets. The concepts of autonomy codes foreground the forms taken by 
knowledge practices expressed in classroom discourse, focusing on a key relevant 
feature for integration: their relations with other knowledge practices. Analyzing the 
pathways traced by successive codes reveals how different teaching practices enable 
or constrain the integration of ‘mathematics’ into ‘science’. Using these concepts, we 
analyzed contrasting examples of classroom practice from secondary school lessons 
in science that suggest autonomy tours support and one-way trips obstruct the integra-
tion of ‘mathematics’ into ‘science’.

One implication of the analysis is that pathways to successful integration are not 
necessarily direct. In the tour example, the separation of ‘mathematical’ ideas from 
‘scientific’ knowledge was an important precursor to its subsequent integration. 
This speaks to an issue highlighted by science education research: student difficul-
ties with recognizing they are exploring mathematical ideas when presented in 
scientific contexts (e.g. Planinic et al. 2012). Constructing the ‘mathematics’ knowl-
edge as separate (exotic code) is an opportunity to highlight the specific constel-
lations of meanings within which that knowledge is located and which underpins 
its ‘mathematical’ nature. Turning those ideas to a ‘scientific’ purpose (introjected 
code) and connecting those repurposed ideas to ‘scientific’ knowledge (sovereign 
code) recontextualizes the ideas within a new constellation of meanings. A tour thus 
offers the possibility of making explicit those constellational differences. It makes 
the knowledge visible to students. As a growing body of research is showing, not all 
tours involve this specific combination of autonomy codes, but all involve departing 
and returning. If classroom discourse remained within a sovereign code through-
out, these constellational differences would not be made visible; and if classroom 
discourse did not return, the recontextualization of ideas between constellations 
would not be possible.

While ‘autonomy codes’ help bring knowledge practices into the picture, we 
should emphasize that the concepts are not limited to that focus – one can also ana-
lyze students’ dispositions, interactions and changing understandings. In short, the 
concepts can be enacted to examine both forms of knowledge practices and ways of 
knowing. This would enable ‘matches’ and ‘clashes’ to be identified, supporting the 
development of appropriate pedagogic practices.

Autonomy codes are, of course, not the only feature of knowledge practices, and 
autonomy tours are not the only factor in integration. As mentioned earlier, a key 
issue highlighted by physics education research is that science involves ‘learning 
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to blend physical meaning into mathematical representations and use that physi-
cal meaning in solving problems’ (Redish 2017: 25). This can be traced through 
autonomy pathways: the second teacher condenses ‘mathematical’ ideas with empir-
ical meanings when repurposing ‘graphing rules’ (from exotic code to introjected 
code) and when relating the resultant graphs to explaining Earth’s seasons (from 
introjected code to sovereign code). In contrast, the ‘maths’ of the first teacher 
remains disconnected from empirical referents. However, this changing attribute is 
not directly conceptualized by autonomy codes. For this one can draw on the LCT 
dimension of Specialization to conceptualize relations with empirical referents in 
terms of epistemic relations and to reveal that integration of ‘mathematics’ into ‘sci-
ence’ involves processes of ontic condensation (Maton 2014: 175–84; Wolff 2017).

Nonetheless, autonomy codes offer a valuable start for bringing knowledge prac-
tices into view and autonomy tours may represent a key to pedagogically integrating 
mathematics into science learning. Using the notion of targets to enact these con-
cepts resolves a major obstacle to generating a general model of pedagogic inte-
gration: the problem of defining ‘mathematics’ and ‘science’ when the constitutive 
features of each subject, and relations between them, vary across contexts. ‘Targeting’ 
these constitutive features in translation devices addresses the contextual and chang-
ing nature of whether practices are constructed as ‘mathematics’ or as ‘science’. 
‘Targeting’ also allows studies to translate the specificities of each empirical context 
into concepts capable of generating a general model. We can examine, for example, 
the role of ‘autonomy tours’ in integration, howsoever ‘science’ and ‘mathemat-
ics’ are defined. By targeting science in this way, we can indeed hit a bullet with a 
smaller bullet, while blindfolded and riding a horse.

Notes

1 Research into science education is divided into ‘science education research’ for schooling 
and disciplinary specialisms (such as ‘physics education research’) at university level. In 
our empirical examples from secondary schooling, ‘science’ is taught, but our argument 
is not limited to one discipline or level of education.

2	 Work discussing ‘disciplinary discourse’ (e.g. Airey and Linder 2009) points towards 
knowledge but reduces this ‘discourse’ to representations of more fundamental ‘ways of 
knowing’, leading again to studies of student ‘fluency’ in ways of knowing – subjectivism 
returns.

3 In LCT this is to say that production fields, r econtextualization fi el ds, and re production fie lds  
have their own distinctive logics (Maton 2014: 47–52).

4 I must emphasize ‘complemented’: to replace studies of ways of knowing with analysis 
of forms of knowledge would be to continue taking part of the picture for the whole.
Both knowledge and knowing are significant.

5 This study was funded by the Australian Research Council (DP130100481).
6 These examples were introduced in Maton (2018) and are more extensively analysed 

here.
7 In Chapter 4 of this volume I focus on how teachers integrate a multimedia object into 

a specific task, so each teacher’s target is the lesson and their core target is the specific task.
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8	 During data collection the curriculum authority was the New South Wales Board of 
Studies. Though renamed the New South Wales Education Standards Authority (NESA), 
its syllabus remains the same at the time of publication. All ‘NESA’ quotes are from 
https://syllabus.nesa.nsw.edu.au/stage-4-content/.

	 9	 All quotes in this paragraph are from NESA.
	10	 In Figure 2.3 the shift is to just inside the exotic code because content and purpose con-

cern educational knowledge or associated non-targets (PA–, RA–).
	11	 All quotes in this paragraph are from NESA.
	12	 Both content and purpose may be non-target but still concern educational knowledge, 

so embody an associated exotic code.
	13	 The pathway in Figure 2.5 shifts to the far right, indicating extremely strong relational 

autonomy, because creating a graph for the experiment’s results is within the teacher’s 
inner-core target purpose.
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