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Highly technical discourse regularly uses a range of formalisms for organising its knowledge. 

Resources such as mathematics, system networks, tree diagrams and nuclear equations occur 

through varied disciplines and are crucial components of the texts students need to read and 

write to be successful in these areas. For the development of literacy pedagogy that can be 

embedded in disciplinary teaching and learning, an understanding of how these formalisms 

work and why they occur is vital. To date, however, multimodal discourse analysis informed 

by systemic functional linguistics (hereafter SFL) has not provided comprehensive 

descriptions of academic formalisms and the work that has been done has focused on specific 

resources in specific disciplines (such as mathematics; O’Halloran 2005, Doran 2017). This 

chapter extends this work by exploring a set of formalisms used in linguistics and physics to 

ascertain their role in building technical knowledge, and to highlight some of the properties 

they share across disciplines. 

 

We begin by looking at some phases of technical discourse across physics and linguistics. In 

the first, a university physics text-book describes the behaviour of gases (Young and 

Freedman 2012: 591-592; bold and italics in original): 

 
 Measurements of the behaviour of various gases lead to three conclusions: 

1. The volume V is proportional to the number of moles n. If we double the number of 

moles, keeping pressure and temperature constant, the volume doubles. 

2. The volume varies inversely with the absolute pressure p. If we double the pressure while 

holding the temperature T and the number of moles n constant, the gas compresses to 

one-half of its initial volume. In other words, pV = constant when n and T are constant. 

3. The pressure is proportional to the absolute temperature. If we double the absolute 

temperature, keeping the volume and number of moles constant, the pressure doubles. In 

other words, p = (constant)T when n and V are constant. 
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These three relationships can be combined neatly into a single equation, called the ideal-gas 

equation: 

   𝑝𝑉 = 𝑛𝑅𝑇   (ideal-gas equation) 

 

Text 1. Young and Freedman (2012: 591-592) 

 

For outsiders to physics, this text is likely impenetrable. It is written for those with significant 

training in physics and is introducing a highly technical component of its overall knowledge 

structure – the ideal-gas equation. What we will be concerned with in this chapter is why the 

text introduces the mathematical equation 𝑝𝑉 = 𝑛𝑅𝑇 at the end of this phase, rather than just 

continuing with language. 

 

Later on in the book (pg. 1465), when introducing the nuclear reactions of nuclear fission 

(used in nuclear power and weapons) and nuclear fusion (used by the sun to produce energy), 

there is a shift from language to a different type of formalism referred to as nuclear equations. 

In the following excerpt, the nuclear equation (indented in the text) does not synthesise what 

comes before (as in the previous example), but is used as a point of departure for a discussion 

of kinetic energy in fission: 

 
 Fission Reactions 

You should check the following two typical fission reactions for conservation of nucleon 

number and charge: 

  U()
)*+ + n./ → U()

)*1 ∗ → Ba+1
/55 + Kr*1

8( + 3 n./  

   U()
)*+ + n./ → U()

)*1 ∗ → Xe+5
/5. + Sr*8

(5 + 2 n./  

The total kinetic energy of the fission fragments is enormous, about 200 MeV (compared to 

typical a and b energies of a few MeV). The reason for this is that nuclides at the high end of 

the mass spectrum (near A = 240) are less tightly bound than those nearer the middle (A = 90 

to 145). Referring to Fig. 43.2 [not shown], we see that the average binding energy per 

nucleon is about 7.6 MeV at A = 240 but about 8.5 MeV at A = 120. Therefore a rough 

estimate of the expected increase in binding energy during fission is about 8.5 MeV – 7.6 

MeV = 0.9 MeV per nucleon, or a total of (235)(0.9 MeV) » 200 MeV. 

 

 Text 2. Young and Freedman (2012: 1465) 
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The nuclear equations here indicate a series of events in the process of nuclear fission. 

Stepping through the first equation, it says that Uranium-235 ( U()
)*+ ) collides with a neutron 

( n./ ) to produce (à) a highly energised Uranium-236 atom ( U()
)*1 ∗) which then decays (à) 

into three distinct components: a Barium-144 atom ( Ba+1
/55 ), a Krypton-89 atom ( Kr*1

8( ) and 

three neutrons (3 n./ ). The nuclear equation distils this quite technical event into a single 

symbolic formula. 

 

Moving from physics to linguistics, we see similar shifts. In his seminal description of 

English transitivity, Halliday (1967:39-40), describes a set of process types in English before 

encapsulating the description in a system network: 

 
Two of the three process types are each associated with only one participant, non-directed 

action with actor and ascription with attribuant; structurally, that participant is the subject in 

each case. The third, directed action, is associated with two participants, actor and goal, either 

of which may be the subject. The four examples could thus be grouped as follows: 

 

Process types: 

 

 

directed action 

(S=actor) 

(i) 

she washed the clothes 

(S=goal) 

(i) 

the clothes were washed 

non-directed action 

(S=actor) 

(iii) 

the prisoners marched 

ascription 

(S=attribuant) 

(iv) 

she looked happy 

 
Let us now represent these in terms of grammatical features of the clause using the following 

labels: 

 

 extensive  clause with ‘action’ process-type 

  effective  clause with ‘directed action’ process-type 

   operative  clause with ‘directed action’, subject as actor 

   receptive  clause with ‘directed action’, subject as goal 

  descriptive  clause with ‘non-directed action’ process-type 

 intensive  clause with ‘ascription’ process-type 
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 These features may be organized in systems ordered in delicacy as follows:– 

  

 
Text 3. Halliday (1967:39-40) 

 

Here, the description of process types is reworked in language until it is synthesised into the 

culminating system network. Read from left to right, the network indicates that there are two 

types of major clause: extensive and intensive. Within extensive there are two further types, 

effective and descriptive, and within effective there are two further types, operative and 

receptive. The system network synthesises these types of clause in one diagram. 

 

In another example from linguistics, after explaining context-sensitive grammars and 

exploring some example sentences, Lyons (1967) chooses to represent an example the 

chimpanzee eats the bananas through a tree diagram. A similar diagram to this is drawn in 

Figure 1. 
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Figure 1. Tree diagram 

 

Read from top to bottom, this says that a sentence (∑) includes a singular noun phrase 

(NPsing) and a singular verb phrase (VPsing). Looking at just the NPsing branch on the left, the 

tree also specifies that the noun phrase includes an article (T) and a singular noun (Nsing), 

which in turn includes a noun stem (N) and a zero suffix (ø). Finally, the dotted line indicates 

that the noun is substituted with the word chimpanzee. 

 

These four formalisms all occur in highly technical discourse and are used to synthesise key 

aspects of the knowledge of their disciplines. But at first glance it is not entirely clear exactly 

why they are used or how we can understand them in terms of their meaning-making. To see 

these as a simple short-hand for language – some sort of abbreviation or acronym – is to miss 

the functionality of these resources for distilling large amounts of intersecting technical 

meaning (Martin 1993: 252). Neither does it account for their role in deriving new technical 

meanings (Doran 2017, 2018a; Martin 2013). The fact that formalisms are used so 
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extensively across different disciplines suggests they form a crucial component of much 

academic discourse. But the fact that there are many diverse types of formalism – system 

networks, tree diagrams, nuclear equations and mathematics being only four of innumerable 

relatively discipline-specific formalisms – suggests they each maintain their own 

functionality for their own particular disciplinary context. This chapter is concerned with how 

to describe these formalisms, taking into account what they all share as formalisms used to 

organise technical knowledge, and how they all differ in terms of their specific functionality. 

In broad terms, this chapter takes a step toward developing a semiotic typology of academic 

formalisms. 

 

The description in this chapter arises from three broad research programs. The first has to do 

with a long running educational linguistics concern with exploring the nature of knowledge 

across disciplines – understandings which are fundamental to the development of 

linguistically informed pedagogy and curriculum, embedded in disciplines (Rose & Martin 

2012). This action research program has been considerably enhanced through dialogue 

between Systemic Functional Linguistics (SFL), which underpins this chapter, and a 

sociological framework known as Legitimation Code Theory (LCT) (Maton et al. 2016, 

2019, Martin et al. 2019, Maton and Doran 2017). In work arising from this dialogue, it is 

clear that disciplines that utilise a range of formalisms tend to be associated with the sciences 

(e.g physics and chemistry) or social sciences (e.g. linguistics and psychology), in 

comparison with the humanities (e.g. cultural studies and art history), which tend not to use 

formalisms (Parodi 2012, Lemke 1998).1 In terms of Legitimation Code Theory (LCT), this 

marks a broad distinction between the knowledge codes tending to underpin the sciences and 

the knower codes that are more often prevalent in the humanities (Maton 2014). From this 

perspective, we can ask why academic formalisms tend to be used more in knowledge codes 

than in knower codes. 

 

The second research program relevant to this chapter is the expanding field of multimodal 

semiotics. This research is concerned with the full range of meaning-making resources used 

in human communication, and how they come together to organise our lives. From the 

perspective of multimodality, academic formalisms are pervasive in particular registers; but 

 
1 Although this is a strong tendency, a clear exception to this is the formal logic used in some 

branches of philosophy. 
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as noted above, aside from mathematical symbolism (see Lemke 1998, 2003; O’Halloran 

2005; Doran 2017, 2018a, b, 2020), they have not yet received a great deal of attention. 

These semiotic resources have been considered more language-like when compared resources 

such as images, animation, architecture etc. (cf. Lemke’s 2003 mathematics in the middle 

interpretation of mathematics in relation to language and image in science, and O’Halloran’s 

2005 language-based approach to mathematics). Questions about the inherent similarity and 

difference among the meanings afforded by different modalities of communication have yet 

to be resolved, in part because an adequate theory of broader semiosis is yet to be developed. 

So from this perspective, we can ask about the specific functionality of academic formalisms, 

and their joint communicative affordances. 

 

The final research program contextualising this chapter is the focus on Systemic Functional 

language description and typology explored in this book. In particular, it addresses the 

question of what we mean by functional language typology (see Martin and Quiroz this 

volume), and how we describe languages in ways that enable us to compare and contrast their 

functionality. In the spirit of the previous two research programs, this concern with functional 

language typology can be expanded into asking how we can go about developing a functional 

semiotic typology of academic formalisms in particular, and semiosis in general. 

 

With reference to these three research programs, this chapter will explore four academic 

formalisms – system networks and tree diagrams in linguistics, and nuclear equations and 

mathematical symbolism in physics. It will address both their grammatical organisation and 

the technical meanings they organise. The analysis will focus on two main points. First, each 

formalism construes a distinct set of meanings that are crucial for the development of 

knowledge in the discipline they are used in. Importantly, the particular meanings that each 

formalism construe is discipline specific. Unlike language that can organise an enormously 

wide range of different ideational, interpersonal and textual meanings for use across a range 

of registers and genres, each formalism is much more specialised – targeting one or two types 

of ideational meaning. We will explore this through an evolving model of field in SFL 

presented in Doran and Martin (2020). Second, although each formalism construes different 

meanings, they are all able to iterate these meanings to an indefinite extent. That is, no matter 

the particular meanings they construe, each formalism can make as many of these meanings 

as necessary for purposes of knowledge building. This potential for repetition underpins the 

general functionality of academic formalisms, as it enables highly complex and elaborated 
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meanings to be integrated relatively efficiently. Iteration is enabled by the grammatical 

organisation of each resource. Although at first glance each formalism appears very different, 

the need for repetition of field-specific meanings means that they are all organised around a 

particular type of structure that Halliday (1965) has referred to as a univariate structure, 

which he defines as repetitions of a single variable. 

 

These two points, specialisation and iteration, will shape the chapter. We begin by focusing 

on the differences between these formalisms in terms of the particular field-specific meanings 

they construe. Following this, we will come back to their similarities in terms of their ability 

for iteration and the grammatical organisation enabling this.  

 

 

Academic formalisms and field 

 

Systemic networks, tree diagrams, nuclear equations and mathematical symbolism all 

construe different types of meaning. To get a sense of their differences, we will step through 

each from the perspective of field, which can be viewed in common sense terms as 

considering the ‘content’ meanings of educational knowledge. More strictly speaking, in SFL 

terms, field is a resource for construing phenomena – for building knowledge across all walks 

of life. 

 

In terms of Doran and Martin (2020), system networks and tree diagrams both construe 

relatively static relations between items. Beginning with system networks, as noted above 

these networks make distinctions in terms of type and subtype. In the network in Text 3 

above, extensive and intensive are types of major clause, while effective and descriptive are 

types of extensive clause and so on. This organisation of clauses into types and subtypes is 

known as a classification taxonomy. 

 

Tree diagrams also organise taxonomic relations between items. However whereas system 

networks organise their meanings into type-subtype relations, tree diagrams organise them 

into part-whole relations – a composition taxonomy. In Figure 1 above, for example, singular 

noun phrases (NPsing) and singular verb phrases (VPsing) are not types of sentence (∑), but 

rather are parts of the sentence. Similarly, suffixes such as -ø are -s are not a type of noun (N) 

or verb (V), but are parts of these word classes. In this sense, the two linguistic formalisms of 
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system networks and tree diagrams both construe taxonomic relations, but one construes 

taxonomies of classification while the other construes those of composition.2   

 

Whereas the two linguistic formalisms construe a relatively static perspective, nuclear 

equations in physics symbolise a dynamic perspective on unfolding events. Each arrow in 

these equations construes a shift from one set of particles to another. In terms of field, rather 

than establishing taxonomic relations between items, nuclear equations realise unfolding 

activities. In equation (1), the nuclear reaction is organised in terms of two activities, each 

specified by à: 

 

(1) U()
)*+ + n./ → U()

)*1 ∗ → Ba+1
/55 + Kr*1

8( + 3 n./  

 

The first activity, U()
)*+ + n./ → U()

)*1 ∗, specifies that U()
)*+ + n./  (Uranium-235 and a neutron) 

shifts to U()
)*1 ∗ (an excited uranium-236 atom). The second activity U()

)*1 ∗ → Ba+1
/55 + Kr*1

8( +

3 n./  specifies that the excited Uranium-236 atom splits into Ba+1
/55 + Kr*1

8( + 3 n./  (a Barium-

144 atom, a Krypton-89 atom and three neutrons). By placing both of these activities in a 

single equation, the formalism indicates that they form moments of a broader activity, which 

is known in language as nuclear fission. This means in Doran and Martin’s (2020) terms that 

the full equation involving multiple arrows realises a momented activity. 

 

In addition to these activities, nuclear equations also realise a set of compositional relations. 

The symbols on either side of the arrows ( U()
)*+ + n./ , U()

)*1 ∗, Ba+1
/55 + Kr*1

8( + 3 n./ ) specify the 

particles involved at each step of the activity. At the highest level, the expression U()
)*+ + n./  

specifies that in the system at this step of the activity, there is a Uranium-235 atom ( U()
)*+ ) 

and a neutron ( n./ ); in the second step, the system comprises just a single Uranium-236 atom 

( U()
)*1 ∗); and in the third step, the system comprises a Barium-144 atom, a Krypton-89 atom 

and three neutrons ( Ba+1
/55 + Kr*1

8( + 3 n./ ). 

 
2 The tree diagram does make some small distinctions in classification through subscripts on 

the symbols, such as Nsing and Nplur distinguishing between singular and plural nouns, 

however importantly, this cannot be repeated indefinitely in the way the branches showing 

composition can. 
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Whereas the linguistic formalisms realise taxonomic relations and nuclear equations realise 

activities, the symbols in mathematics construe a third type of meaning modelled by Doran 

and Martin (2020) as properties. This accounts for the fact that unlike the elements in the 

linguistic formalisms or the arrows in the nuclear equations, each symbol in mathematical 

equations is gradable and/or measurable. In 𝑝𝑉 = 𝑛𝑅𝑇, for example, we are able to have 

more or less volume or pressure (symbolised by V and p) and are able to measure these 

numerically as, say, 𝑉 = 0.0224	m* or 𝑝 = 1.013 × 10+	Pa. In system networks on the other 

hand we are not able to have are more or less extensive or intensive;3 neither can we have 

more or less of the symbols NPsing or -s in tree diagrams, or more or less à (glossed as 

‘becomes’) in nuclear equations. Properties are gradable and potentially measurable 

meanings, and are crucial components of many academic fields.4  

Symbols are organised into mathematical statements through a set of relations such that if a 

change in the value of one symbol occurs, then this will affect all other symbols. For example 

in 𝑝𝑉 = 𝑛𝑅𝑇, assuming all else stays the same, if p increases, then V must decrease or the 

product of n, R and T must increase (or both). Doran and Martin (2020) refer to relations 

 
3 In some system networks, descriptions have involved clined systems that show gradations 

between ‘more’ or ‘less’ of a feature, such as van Leeuwen’s (2009) ‘parametric’ systems for 

voice quality, which would here be described in terms of property. In these instances, the 

network is no longer realising a classification taxonomy. There have also been attempts at 

complementing the typologies of system networks with topologies, generally shown through 

cartesian planes (e.g. Martin and Matthiessen 1991 for various areas of English 

lexicogrammar, and Martin and Rose 2008 for genre). However in general, most system 

networks conform to the description in this chapter. 
4 More specifically, mathematical symbols are instances of itemised properties (Doran and 

Martin 2019; Doran 2019). Properties in general describe elements that are gradable, such as 

warm : warmer; big : bigger. Itemised properties are also gradable, but are construed as items 

in and of themselves, either through grammatical metaphor such as warmth, or 

technicalisation of a dimension such as temperature (Hao 2020a, b). For example warm is a 

property and can be graded, but when discussed as temperature, it is an itemised property that 

can be both graded and classified into absolute temperature, relative temperature etc. This 

distinction does not affect the argument in this chapter. 
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between properties as interdependency relations.5 Each mathematical statement sets up a vast 

network of interdependency relations that construe the possibilities of the physical systems 

they describe. 

The overview so far gives a sense of each formalism in terms of the main meanings they 

realise in field, as shown in Table 1. 

 

Formalism Field meanings realised 

System networks classification taxonomies 

Tree diagrams composition taxonomies 

Nuclear equations momented activities and composition taxonomies 

Mathematics interdependencies between properties 

 

Table 1. Field meanings realised by academic formalisms 

 

Importantly for our understanding of these formalisms, these meanings constitute the vast 

majority of the possible meanings each can make. For example, although mathematics can 

make very small distinctions in classification through subscripts on symbols (e.g. x1, x2, x3 

etc.), this is minor compared to its ability to realise interdependencies; and algebraic 

mathematics has no way of construing composition or activity (Doran 2018a). Similarly, 

although tree diagrams construe composition, any construal of classification is relatively 

minor. Looking more broadly, although most of the formalisms have some small variations 

that may organise informational prominence (giving textual meaning), such as the vertical 

arrangement of system networks, the choice of the left or right side of the equation in 

mathematics and the ordering of particular symbols in nuclear equations, they do not appear 

to show any variation that can be considered ‘interpersonal’ in terms of organising dialogue, 

evaluation or nuanced social relations of any sort; seen from a linguistic perspective, they do 

 
5 In Doran (2018a) these relations were called implication complexes and were described as 

being realised by co-variate structures. With the revision of the model of field in Doran and 

Martin (2019), this is now better described in terms of inter-dependency relations. 
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not display relatively independent variation that suggests meanings of MOOD or (Halliday and 

Matthiessen 2014), nor do they suggest any APPRAISAL or NEGOTIATION (Martin and White 

2005), nor do they indicate variations in STATUS or CONTACT (Martin 1992) (see Doran 2018b 

for detailed argumentation concerning this in mathematics). All this is to say that each 

formalism is heavily devoted to a very specific set of field-relations. This explains the 

relatively mundane observation that we do not converse in mathematics, nor share our 

feelings with system networks. In general terms then, although the particular meanings they 

construe differ, each formalism share this feature of construing only a very constrained set of 

field-specific meanings 

 

In the next section we will show that this is not all they share. In addition to having a 

relatively constrained set of meanings they realise, these formalisms share the ability to 

iterate these meanings through a highly recursive grammatical organisation. 

 

The grammatical organisation of academic formalisms 

 

So far we have seen that each formalism construes very particular field-specific meanings. 

This section will explore these formalisms in terms of their overall grammatical organisation 

(building upon the final chapter of Doran 2018a). In particular, we will show that they all 

maintain a highly iterative grammar that enables an indefinite repetition of their field-specific 

meanings. As defined by Halliday (1965) univariate structures involve indefinite iteration of 

the same structural relation. In English, for example, a typical univariate structure involves 

the complexing of groups or clauses where multiple elements of the same type are presented 

in sequence: 

 

(1) Dylan was the first to go, then (2) Frank left, and then (3) Josie went home. 

 

Here, each of the clauses perform a similar function to the others in terms of their temporal 

unfolding, and importantly, an indefinite number of clauses can be added into this sequence.  

This is in contrast to a typical multivariate structure that involves distinct functions that can 

only occur once. The functional organisation of English TRANSITIVITY structures exemplifies 

a multivariate structure (Halliday and Matthiessen 2014): 
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Twenty-two working-class northern clubs formed the Northern Rugby Football Union 

Actor Process Goal 

 

Here, the Actor, Process and Goal each perform distinct functions in terms of their potential 

grammatical patterns and can only occur once (we cannot have two Processes in a single 

clause, two Actors or two Goals, for example). This is quite distinct from the patterns we will 

see below in the formalisms where most options can occur an indefinite number of times. 

Starting with system networks, we will step through each formalism in turn, building up our 

picture of how they work. 

 

 

System Networks 

 

System networks are organised around sets of choices placed in systems, with the minimum 

network being a system with two choices as in Figure 2. Here the choices are shown through 

the square ‘or’ bracket '['. This indicates that in the system of MOOD either indicative or 

imperative is a possibility. As discussed in the previous section, from the perspective of field, 

each choice realises an item in a classification taxonomy. Note that for this description, a 

choice includes both the feature, shown in lower case (indicative or imperative) and its 

realisation statement – marked by ↘ and including functions (+Subject; +Finite).6  

 

 

 
 Figure 2. Minimal system network  

 
6 For reasons of space, we will not explore realisation statements in detail here. See the final 

chapter of Doran (2018a) for a more in-depth discussion. 
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In such systems, each choice plays the same role; their vertical ordering higher or lower is not 

meaningful, ideationally speaking.  

 

Systems can be expanded to involve more than two choices, as in Figure 3: 

 

 
 Figure 3. System with three choices. 

 

In principle, systems can be expanded indefinitely to involve any number of choices. This 

opens the potential for networks to realise an indefinitely broad classification taxonomy with 

innumerable subtypes. Grammatically speaking, as each choice plays the same role and there 

can be any number of them, these systems involve univariate structure organised as a 

complex of choices.7 

 

Although in principle systems may include any number of choices, in practice they tend 

toward only two. This enable generalisations to be captured at multiple levels of delicacy. 

Any further choices at a greater delicacy occur by adding systems to the right of each choice 

in the network, as in Figure 4. 

 

 
7 It must be stressed that here we are talking about the structure of the system network 

formalism itself, not the component of language the system network describes (which can be 

either multivariate or univariate). 
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 Figure 4. System network with two levels of delicacy. 

 

 

Here, each of the choices of indicative and imperative have two subtypes: declarative and 

interrogative for indicative, and jussive and optative for imperative. Networks can specify 

any degree of delicacy, meaning there is potential for indefinite iteration along this dimension 

of the formalism (alongside the potential for an indefinite number of features in systems 

noted above). This means there may be an indefinite number of layers of systems, with each 

system potentially including an indefinite number of features. 

 

The indefinite expansion of choices within a system and the ability for indefinite layering 

through increased delicacy offer two paths for iteration in the grammar of system networks. 

From the perspective of field, this means that system networks enable the realisation of both 

extra breadth in taxonomies (indefinite numbers of items in a single layer of a classification 

taxonomy – i.e. an indefinite number of co-classes) and extra depth (an indefinite number of 

levels in a classification taxonomy – i.e. extra iterations of subclasses within subclasses). 

 

There is one further means for complexing that dramatically increases the degree of field-

specific meaning a network can realise. This is the possibility for simultaneous systems, 

where multiple systems can be cross-classified. This is shown in system networks through a 

curly bracket '{', that indicates an ‘and’ relation. In Figure 5, the network indicates that if a 
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major clause is chosen, then one must choose from each of MOOD and THEME and 

TRANSITIVITY. Thus a clause will take choices from each of these systems. 

 

 
Figure 5. Simultaneous systems 

 

As with the previous expansions, there can be an indefinite number of simultaneous systems. 

In terms of field, the use of simultaneous systems enables multiple classification taxonomies 

to be realised at once. Grammatically speaking, this again involves a univariate structure; 

there may be any number of simultaneous systems and each performs the same broad 

ideational function. 

 

In Figure 5 these taxonomies are all relatively independent: each choice in THEME can occur 

with each choice in TRANSITIVITY with each choice in MOOD. But system networks also 

enable more specific interdependencies to be shown, as in Figure 6 (from further on in 

Halliday 1967). 
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 Figure 6. System network realising multiple interdependent classification taxonomies. 

 

This system network sets up multiple, interdependent classification taxonomies. At its most 

general, it sets up a single taxonomy of extensive vs intensive. But within extensive, it 

realises two distinct taxonomies: one with two choices, effective and descriptive, and another 

with three choices: operative, middle and receptive. At a more delicate level, it specifies 

much more intricate interdependencies. For example the intersection of both effective from 

one taxonomy and operative from another open up a third taxonomy with two types (goal-

transitive and goal-intransitive), while the intersection of effective and receptive allows for 

another taxonomy that distinguishes two further types (agent-oriented and process-oriented). 

System networks enable a precise realisation of these classification taxonomies in one 

synoptic snapshot. And its grammar enables there to be any number of these taxonomies that 

may be indefinitely deep or indefinitely wide (for good examples of large networks along 

these lines, see Halliday and Matthiessen 2014, especially Fig.4-13, and Matthiessen 1995). 

The functionality of system networks is summarised in Table 2.   

 

System networks 

 

 

Univariate structures in the grammar Field-specific meanings realised 

choices in a system breadth of a classification taxonomy 

systems ordered in delicacy  

(layers of univariate structure) 

depth of a classification taxonomy 

simultaneous systems number of classification taxonomies 

  

Table 2. Grammatical organisation and field relations in system networks 
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Tree diagrams 

 

Like system networks, tree diagrams are organised around a relatively small number of 

elements. However unlike system networks, tree diagrams have been taken up by a wide 

range of different schools of linguistics. This means there is not just one type of tree diagram; 

what is possible and what regularly occurs in this formalism varies across the field. For this 

reason, here we will focus only on general features that associated with basic phrase structure 

grammars (e.g. Chomsky 1957).  

 

Constituency tree diagrams are organised around branches that emanate from nodes. A basic 

tree will involve a node with two or more branches, as in Figure 7: 

 
Figure 7. Basic tree diagram 

 

This tree diagram is read as saying an NP is composed of a T and an N. The T is substituted 

lexically by the and the N is substituted by ball. As noted above, the relationship between the 

NP and the T and N is one of composition. Like system networks above, this relationship can 

NP

T N

the ball
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be repeated indefinitely for each branch.8 In Figure 8, for example, there are six levels of the 

composition taxonomy realised by a series of branches from S to the Det and N of the park.9   

 

 
8 In contrast, the relation between T and the, and N and ball, known as lexical substitution, is 

not one of composition; the is not part of T and ball is not part of N here. Rather, it is better 

described in terms of an elaboration, where the lexical item (ball/the) and its grammatical 

category (N/T) are equated. Importantly for our description, this distinction between lexical 

substitution and the composition relations of the tree is paralleled by the fact that whereas the 

compositional relations can be repeated, lexical substitution cannot. In general, once a branch 

has had a lexical item substituted (e.g. N has become ball), one cannot substitute another 

lexical item for ball and then another and then another indefinitely.  
9 For examples of how many iterations constituency trees can show, see those used in the 

early years of generative semantics, especially Ross and Lakoff (such as one reproduced in 

Harris (1993: 144) with no fewer than twenty-three tiers for the sentence Floyd broke the 

glass). 

NP

Det N

the ball

VP

V

S

NP

Det N

the dog chased NP PP

P NP

from Det N

the park
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Figure 8. Tree diagram with increased depth 

 

Iterating branches down the page realises increasing levels of depth in the composition 

taxonomy.  

 

In the above examples the trees set up binary branches where no more than two branches 

occurred for each node (e.g. an NP split into two branches, a Det and an N). In some schools 

of linguistics, there can also be as many branches as needed for any level in the constituency 

hierarchy. That is, one can also expand indefinitely the breadth of compositional taxonomies, 

such as in Figure 9.10  

 
Figure 9. Tree diagram with increased breadth 

 

Tree diagrams are thus organised around a univariate structure on two dimensions. First, they 

enable an indefinitely iterative number of levels in hierarchy, developing depth in the 

composition taxonomy. Second, depending on the subfield, they enable an indefinite number 

of branches to occur in each level, allowing increasing breadth of the taxonomy. These two 

possibilities for expansion are summarised in Table 3. 11 

 
10 For examples of trees that significantly iterate the number of branches in each level – so 

emphasising breadth over depth – see the Appendix B of Fawcett (2000). 
11 The order of the lexical items at the bottom of the diagram also reflect, to a certain degree, 

their ordering in language. In this sense, the tree diagrams realise what Doran and Martin 

S

S

S ConjNP

Gallen

VP

grabs the ball

VP

runs it and

S

VP

drops it
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Tree diagrams 

 

 

Univariate structures in the grammar Field-specific meanings realised 

levels in the tree depth of a classification taxonomy 

branches in each level breadth of a classification taxonomy 

 

Table 3. Grammatical organisation and field relations in tree diagrams. 

 

 

Mathematical symbolism 

 

Moving from linguistic formalism to mathematical symbolism, there is a shift from 

construing taxonomic relations between items to establishing interdependencies between 

measurable properties. Like system networks and tree diagrams, mathematical symbolism 

can establish innumerable relations between properties through a highly univariate grammar 

at multiple levels (the overview given here is based upon the more detailed description given 

in Doran 2018a).  

 

Here we will focus on mathematical symbolism most closely associated with elementary 

algebra, as often used in high school science (see Doran 2018a for details). A basic 

mathematical statement involves two expressions linked by a Relator. In equation (2) which 

describes kinetic energy, the energy of motion, the two expressions are 𝐾G and /
)
𝑚𝑣) and the 

Relator is =  

 

(2) 𝐾G =
/
)
𝑚𝑣) 

 
(2019) call a spatio-temporal property; they specify the location of each lexical item in the 

sentence. Utilising both the vertical and horizontal axes enables the diagram to show these 

multiple field-specific meanings, depth and breadth of composition, and spatio-temporal 

properties. Indeed this is one of the main affordances of these types of images over phrase 

structure rules. However a discussion of the functionality of imagic vs symbolic formalisms 

is beyond the scope of this paper. 



Pre-publication draft to appear in Martin, J. R., Doran, Y. J. and Figueredo, G. (eds) (2019) Systemic Functional 
Language Description: Making Meaning Matter. London: Routledge. 331-356. 

 

Ideationally speaking, the two expressions perform the same role. This can be shown by the 

fact that they can be swapped in order with only a change in the information organisation (i.e. 

ideationally, (2) and (3) are the same): 

 

(3) /
)
𝑚𝑣) = 𝐾G 

 

This basic mathematical statement can be expanded to include more expressions and 

Relators, such as the following equations that have three and four respectively: 

 

(4) 𝐸/ = 𝐸) = 𝑘 

 

(5) 𝜆 = M
N
= *×/.O

/.5./×/.P
= 2.9m 

 

In principle, statements can include any number of expressions linked by Relators and can 

generally be rearranged in any order without affecting their ideational meaning.12 As there is 

the potential for indefinite expansion and each expression performs the same ideational 

function, we can again describe this area of mathematics’ grammar as a univariate structure. 

 

Although in principle there can be an indefinite number of expressions in a statement, for 

textual reasons, there is a strong tendency to have only two, with three or four occurring at 

times, and any more being unusual. To allow for further expansion of relations between 

symbols, then, there is a second avenue for indefinite iteration involving the number of 

symbols within an expression. As the left-hand side of equations (2), (4) and (5) show, it is 

common for one of the expressions to include only a single symbol. But in other expressions 

in these equations, there are many more. Every symbol that is added must necessarily be 

linked by an arithmetic operator such as + (addition), – (subtraction), ÷ (division) and × 

 
12 This analysis is slightly complicated by inequations that use Relators such as > (larger 

than), < (smaller than), ≥ (larger than or equal) and ≤ (smaller than or equal to). These can 

also be rearranged without affecting their ideational meanings, however it requires a small 

alternation in the direction of the Relator. That is 𝑦 > 7 construes the same ideational 

meanings as 7 < 𝑦. See Doran (2018a: 80-88) for more detailed argumentation. 
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(multiplication).13 For example, the second expression in equation (5) (M
N
) has two, while the 

second expression in (2) (/
)
𝑚𝑣)) has five, and in the following equation, there are sixteen 

across three expressions: 

 

(6) 𝑟 = 4𝜋𝜀.
Z[ℏ[

]^_[
= Z[

^
𝑎. 

 

Like expressions, symbols can also be iterated indefinitely. Indeed it is here that most of the 

expansion occurs.  

 

We can thus again consider this type of formalism to be organised around a univariate 

structure. Like system networks and tree diagrams, mathematics offers multiple avenues for 

indefinite iteration. In this case, both levels of iteration realise the same field relation: 

interdependencies between itemised properties. Table 4 summarises these possibilities for 

mathematical symbolism. 

 

Mathematical symbolism 

 

 

Univariate structures in grammar Field-specific meanings realised 

expressions within statements 
interdependencies between itemised properties 

symbols within expressions 

 

Table 4. Grammatical organisation and field relations in mathematical symbolism. 

 

 

Nuclear equations 

 

As with the other three formalisms, nuclear equations are also organised through multiple 

components with a univariate structure. Like system networks and tree diagrams, but unlike 

mathematics, the two univariate components organise different meanings at field. However 

 
13 In the case of multiplication, the × is typically elided, so that an expression /

)
𝑚𝑣)  means 

/
)
× 𝑚 × 𝑣). 
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whereas each component in system networks and tree diagrams organise slightly different 

facets of the same broad area of field – the depth, breadth and number of classification 

taxonomies in system networks, and the depth and breadth of composition taxonomies in tree 

diagrams – the two avenues for expansion in nuclear equations organise quite different field 

relations: the momenting of activities and the breadth of composition taxonomies. 

 

At the highest level, a basic nuclear equation is organised through two expressions on either 

side of an arrow à. In the following equation the two expressions are Ra88
))*  (signifying 

Radium-223) and C1/5 + Pb8)
).(  (Carbon-14 plus Lead-209): 

 

(7) Ra88
))* → C1/5 + Pb8)

).(  

 

As we’ve already seen, nuclear equations can have more than two expressions, with each new 

expression being linked by another à, as in the three expressions in: 

 

(8) U()
)*+ + n./ → U()

)*1 ∗ → Xe+5
/5. + Sr*8

(5 + 2 n./  

 

Just like each of the formalisms we’ve seen so far, the number of expressions can be repeated 

indefinitely. A well-known decay chain, known as the actinium chain, for example, can be 

represented as follows: 14 

(9)  

 
As discussed above, by expanding nuclear equations in this way, the text is able to 

indefinitely moment the activities of nuclear reaction and decay. The discipline is able to 

specify in as much or as little detail the steps between two states. 

 
14 This particular nuclear equation is taken from the Wikipedia page for Uranium 235. 

https://en.wikipedia.org/wiki/Uranium-235 Accessed 11/02/19 
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The second avenue for expansion occurs within each expression and has to do with what 

particles occur at each stage of the activity. In the following equation, each state is 

represented by a set of symbols that represent particles. The first involves two symbols U()
)*+  

and n./ , the second involves just a single symbol U()
)*1 ∗ and the third involves three symbols 

Xe+5
/5. + Sr*8

(5 + 2 n./ . 

 

(10) U()
)*+ + n./ → U()

)*1 ∗ → Xe+5
/5. + Sr*8

(5 + 2 n./  

 

The number of symbols in each expression can again in principle be indefinitely expanded. 

And each perform the same function in the sense that they can be rearranged in any order 

without change to their ideational meanings (only textual meanings). In this sense, this 

provides a second avenue for univariate expansion. In this case, the expansion does not 

moment an activity, but rather expands the breadth of the compositional taxonomy at this 

point of the activity. It is important to note that unlike tree diagrams, nuclear equations 

cannot expand in depth; they cannot iterate further parts of parts of parts. Any depth is 

specified precisely by the numbers to the side of the symbols, such that U()
)*+  indicates the 

Uranium involves 235 nucleons and 92 protons. The nuclear equation cannot specify what 

constitutes these nucleons or protons (i.e. quarks), nor can it group different sets of protons or 

nucleons together in other levels of a compositional taxonomy. The only iterative expansion 

available here is an expansion in the breadth of the compositional taxonomy at a single 

level.15  

 

Finally, there is one further small dimension of iteration that occurs in nuclear equations. If 

we look again at equation (9) reproduced below, the expression following Ac8(
))f  (Actinium-

227) provides two alternative pathways for the decay. It may decay to Th(.
))f  (Thorium-227) 

or to Fr8f
)**  (Francium-233). Similarly, following Bi85

)//  (Bismuth-211), two alternative 

pathways are given via Tl8/
).f  (Thallium-207) or Po85

)//  (Polonium-211). These alternatives are 

 
15 Similarly, unlike tree diagrams, the order of the symbols does not specify any spatial 

ordering or location; Xe+5
/5. + Sr*8

(5 + 2 n./  does not mean that there is spatial layout that orders 

Xenon-140 and then Strontium-94 then 2 neutrons. The expression simply notes that these 

particles comprise the system at that point. 
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shown through the brace { and their vertical arrangement. From the perspective of field, these 

realise alternative activities construing the particular pathways of the decay. In principle 

multiple alternatives can be shown, however in practice, this is restricted to the specific 

possibilities for decay that any particular isotope has, and so any more than two is unusual. 

Nonetheless, the formalism enables a realisation of multiple parallel activities (similar to 

system networks enabling multiple classification taxonomies). 

 

(11)  

 
 

 

The possibilities for nuclear equations are summarised in Table 5. 

 

Nuclear equations 

 

 

Univariate structures in the grammar Field-specific meanings realised 

expressions in the equation momenting of activities 

alternative expressions number of activities 

symbols in an expression breadth of a compositional taxonomy 

 

Table 5. Grammatical organisation and field relations in nuclear equations. 

 

 

Field and grammar of academic formalisms 

 

This overview has shown that each resource construes a small set of specific relations in 

field, but that their grammar has evolved to iterate these meanings indefinitely. This enables 

the functionality of each resource for the particular technical knowledge that their respective 
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discipline needs, while at the same time enabling the expansion and integration of this 

technical knowledge into a coherent whole. As far as our concern with semiotic typology is 

concerned, this overview opens a series of questions that could be used to organise a more 

elaborated typology in this area (paralleling the questions presented in Martin and Quiroz this 

volume). From this perspective we may ask of any formalism: 

 

• Does the formalism involve iterative (univariate) structures? 

o If so, how many? 

• Do distinct iterative structures realise the same meanings at field? Or do they realise 

different meanings? 

• What meanings do these iterative structures organise? 

o Taxonomy? 

§ Only one or many? 

§ Composition or classification? 

§ Breadth (co-type/co-part) or depth (type-subtype/whole/part)? 

o Activity? 

§ Only one or many? 

§ Do they moment these activities or not? 

o Property? 

§ Only one or many? 

§ Do they realise independencies between these properties? 

 

Such questions are foundational for the development of a typology of formalisms, and, more 

broadly, a typology of semiotic resources in general – by providing a principled set of 

possibilities that go beyond the surface features of resources (such as whether they are 

images or symbols, language-like or not etc.). 

 

Non-iterative elements 

 

This paper has primarily concerned itself with the iterative structures that form the core of 

academic formalisms. Each resource also includes a small component of elements that are not 

iterative but realise crucial field-specific meanings for their discipline. System networks for 

example include realisation statements that are linked to individual choices, such as: 
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optative 
↘ + Subject; Subject:: let’s 

 

Here, the choice optative leads to the insertion of a Subject and the lexicalisation of this 

Subject as let’s. This example is best read as realising a small relation of composition, 

formalising as it does that optative clauses are composed of (amongst other things) a Subject 

lexicalised as let’s. However these realisation rules are not iterative in the sense that one 

cannot specify further depth in composition within the Subject through multiple realisation 

rules for a single feature. That is, in the optative example above, one could not put another 

arrow ↘	below the realisation rule to put forward another element within the Subject or let’s 

and then indefinitely repeat this down to the morpheme. To do this would require another set 

of system networks (Martin 2013).16 

  

Similarly, as we’ve seen, tree diagrams include a non-iterative component whereby the final 

node is replaced by a lexical item. In the diagram below, the N is replaced with ball and the T 

is replaced with the. However one cannot insert another lexical item once ball or the has been 

inserted.  

 

 
Figure 10. Lexical substitution in tree diagrams 

 

 
16 Though see Bateman (2008) for a suggestion that SFL consider using tree fragments as 

realisation rules, which would enable an iteration of composition along these lines – 

essentially combining system networks with tree diagrams. 

NP

T N

the ball
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The same applies for mathematics and nuclear equations. Both include small components that 

construe meaning that cannot be repeated. In the case of mathematics, small modifications of 

symbols can indicate distinctions in classification. In the following example taken from a 

high school physics classroom, the subscripts indicate three types of E (energy): 𝐸_]mnn_o 

(energy emitted), 𝐸m (initial energy) and 𝐸N (final energy): 

 

(12) 𝐸_]mnn_o = 𝐸m– 𝐸N 

 

Again, these subscripts cannot be iterated (a symbol such as 𝐸_]mnn_oqr[
cannot occur). 

 

In the case of nuclear equations, the numbers to the left of symbols, such as Th(.
))f  indicate a 

small compositional taxonomy. We will step this through using 2 n./ , the final symbol in the 

equation	 U()
)*+ + n./ → U()

)*1 ∗ → Xe+5
/5. + Sr*8

(5 + 2 n./ . The three numbers and their meanings 

are: 

• The subscript 0, known as the atomic number, gives the number of protons in the 

particle (in this case zero); 

• The superscript 1, known as the mass number, gives the total number of nucleons in 

the particle (which group together the protons and neutrons) (in this case one) 

• The number on the left 2, gives the total number of these particles (in this case two). 

  

This establishes a small composition taxonomy whereby the group of particles include a 

particular number of nucleons, which in turn comprise a particular number of protons. But, 

this cannot be iterated; the symbol cannot have superscripts on superscripts or subscripts on 

subscripts that indicate what is in the protons. So, like the other formalisms, nuclear 

equations complement their iterative components with small non-iterative components that 

realise distinct field-specific meanings. 

 

From the perspective of developing a semiotic typology, this allows us to ask of any 

formalism: 

 

• Does the resource couple iterative structures with non-iterative structures? 

• If so, what type of structures are used and how many are there? 
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• What meanings are they being used for? Taxonomy? Activity? Property? 

 

 

Semiotic typology 

 

The questions raised in the previous sections by no means exhaust the possibilities for 

variation across semiosis. They deal in particular with academic formalisms and the 

meanings they organise for technical disciplines. One obvious question not asked above is 

why some formalisms seem to use an imagic mode (such as system networks and tree 

diagrams) and others use a more symbolic mode (mathematics, nuclear equations). For 

reasons of space, we cannot explore this question here; however it does flag work to be done 

to understand the range of meaning-making systems used in social life. Recent decades of 

research in Social Semiotics and Systemic Functional Semiotics have dramatically pushed 

our understanding of semiotic resources to the point where we can now begin to compare and 

contrast them, and develop a typology. For this to be successful, we need principled means of 

comparison that allows us to see both the similarities and the differences, and does not 

assume that certain categories such as metafunction, rank etc. will necessarily occur as they 

do for language.
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