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Abstract This paper reports on a computer simulation based approach to  studying 
longitudinal patterns in social emergence of design practice. Design practice is 
an emergent and not a well-understood social phenomenon, especially in terms 
of understanding how values associated with different design disciplines influ-
ence their design practice. A society of agents, called design agents, representing 
designers with different design backgrounds, interact with each other and with the 
concepts associated with different disciplines. The design agents within each dis-
cipline are modelled to be attracted towards concepts, knowledge mode, as well 
towards the other design agents, knower mode. The force of attraction towards the 
knower or concepts varies between disciplines. A bottom up simulation approach 
is used to study how different models of value change affect emergent patterns of 
behaviour. The findings from these simulations have implications for how we can 
use computation models to study complex social behaviour in design societies.

Keywords Design practice · Legitimation code · Design values · Agent based 
simulation

1  Introduction

Design societies and communities, like societies in general, can be described and 
discussed in terms of their values and practices. In design societies, the  underlying 
design values typically guide design practice, as well as determining what is 
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considered as good design and what designers aspire to. The differences in design 
values across different design disciplines are reflected in the academic literature 
as well the wider public discourse within each of these disciplinary communities. 
For example, in engineering design the established value assessment approaches 
emphasize behavioral characteristics of the designed artefact such as performance, 
reliability and robustness. These assessments are typically disassociated or dis-
tanced from the designer. In contrast, in disciplines such as fashion design and 
architecture, the value assessment often puts considerable emphasis on aspects 
such as individual expressions or uniqueness that are considered as much a critic 
of the designer as that of the designed artefact, leading to comparatively greater 
pull towards the values associated with iconic designers or designs.

In order to better understand and manage design practices in any community, 
it is important to better understand the dependencies between design values and 
design practice. However, changes in design values and design practice occur 
gradually over an extended period of time, which means data over longitudinal 
periods is needed to observe these changes and the mutual dependencies between 
design values and the design practice. Observing such trends is data and resource 
intensive, and often extremely challenging in terms of obtaining sufficient data 
within the span of a single research project. Nonetheless, the study is important 
and critical, because many decisions about managing and improving design prac-
tices are often based on our limited understanding of the relationships between 
design values and design practice. For example, recently there has been a greater 
push for creating multi-disciplinary design societies, which among other benefits, 
are expected to facilitate exchange and sharing of design values across different 
disciplines, in the belief that shared values will enrich design practice. It is often 
not clear which design values we expect to be exchanged or shared through these 
multidisciplinary societies, and we do not have an adequate understanding of 
the long-term implications of these expected exchanges of values. Typically the 
effects of such multidisciplinary design environments are studied through short-
term projects, with significant challenges in avoiding noise around the research 
variables and parameters. While such empirical studies provide useful insights into 
differences across disciplinary silos and multi-disciplinary environments, the short 
duration of these studies and experiments provides little opportunity to study long-
term patterns.

The research reported in this paper focuses on the longitudinal patterns 
of changes in design practices resulting from the changes in design values in a 
multi-disciplinary design environment. This ‘what-if’ study focuses on trying to 
understand the global trends that are likely to emerge as a result of changes in 
design values over time at individual levels, rather than on the mechanisms of 
value change at the individual level. Agent-based simulations are used to carry 
out a longitudinal study. A computational model is created to simulate a society of 
designers, who interact with each other and the design concepts utilizing the value 
systems of their respective design disciplines. The design values and concepts are 
defined at an abstract level such that the simulation results need to be interpreted 
in a context that can be broadly approximated to these abstractions. These abstrac-
tions are based on our current understanding of the relative design values across 
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the three exemplary societies of fashion design, architecture and engineering, 
studied through the lens of legitimation code theory [1, 2]. For example, based 
on Carvalho et al. [2], it is assumed that fashion designers have a greater attrac-
tion towards leading designers (knowers), compared to engineering designers, who 
have a greater attraction towards design concepts (knowledge) than towards the 
leading engineering designers. Assumptions such as the force of attraction become 
the key parameters of the computational model, which are then varied across dif-
ferent simulation cases. This paper describes this simulation model, the conceptual 
basis guiding the underlying assumptions in the model, and preliminary results 
from the different scenarios studied by varying some of these parameters.

2  Background

The simulations are built on an existing computational model developed and previ-
ously reported in Singh and Gero [3, 4]. Legitimation code theory (LCT) [1, 2] is 
adopted as the underlying framework to model the relationships between design 
values and design practice. A brief background to LCT and use of computational 
models in social simulations is provided.

2.1  LCT, Design Values and Social Influence

Legitimation describes what is acceptable or normative in a society, typically 
viewed as some form of unwritten ‘rules of the game’ [5]. LCT provides the 
theoretical basis to explain how unwritten rules of normative practice emerge 
in and guide a knowledge society. Carvalho [6] and Carvalho et al. [2] use LCT 
to explain how design practice and recognition within a social group are driven 
through both knowledge and knower modes [7], i.e., the design practices emerge 
and evolve under the influence of the social structure as well as the knowledge 
structure. For example, in engineering disciplines design values are mostly asso-
ciated with the knowledge structure, whereas in fashion design and architecture, 
design values are equally linked to social structure so that design values are also 
influenced by knowers and their design values.

2.2  Agent Based Models and Social Simulations

Computational social simulations are an established method to test and generate 
socially-related hypotheses [8, 9]. These simulations aim to provide a complemen-
tary research method and infrastructure that can reduce the time, cost and resource 
requirements when generating and testing promising theories, especially in sce-
narios that require longitudinal studies.
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3  Description of the Simulation Model and the Experiment 
Design

Building on Carvalho et al. [2], a society of design agents with different design 
backgrounds is modelled such that all design agents are attracted towards con-
cepts, i.e., knowledge mode, as well towards the other design agents, i.e., knower 
mode, which influences their design values. The force of attraction towards the 
knower or concepts varies across disciplines. The emergent design practice is 
shown through a plot in a two dimensional space defined by the social and knowl-
edge axes. Design agents higher up the social axis exert higher knower force while 
the concepts higher up the knowledge axis exert higher knowledge force.

The computational model is implemented in MASON [10], a java based multi-
agent system. Following Carvalho [6], the three disciplinary backgrounds consid-
ered are architecture, fashion design and engineering. The key assumptions in the 
model, already described in previous papers [3, 4], are reiterated briefly in Table 1.

The social influence exerted on any agent (Ai) by another agent is described 
in Table 1. This influence is a function of the distance between them, and their 
InfluenceRadius, which defines how socially influential they are. Similarly, agents 
are also attracted towards concepts (Ci), which have an InfluenceRadius. Agents 
are attracted towards other agents who are higher in their social dimension, and 
pushed upward with relatively lesser force by agents that are behind them along 
the social dimension. Similarly, agents are attracted towards concepts that are 
higher than they are along the knowledge axis. A disciplinary factor, constant K, 
is used to account for the relative knowledge and knower pulls across the differ-
ent disciplines. As an initial assumption K is set to be one order different between 
fashion design and architecture and between architecture and engineering.

Additional assumptions made in these simulations about the change in values 
are listed in Table 2.

The gap (G) between two agents is the distance along their social axis (agents’ 
position being Ai

x
 ). G is positive if the other agent has a higher position along the 

Table 1  Key assumptions in the simulation model

Aspects to model Assumed relationships Assumed values

Knower mode
Agent (A1) − agent  
(A2) attraction

K × (InfluenceRadius 
A1 × InfluenceRadius A2)/ 
(sq. of social distance 
between A1 and A2)

For design agents
IF discipline is architecture 
K = 100; IF fashion K = 1;  
IF engineering K = 1,000

Knowledge mode
Agent (A1) − concept  
(C1) attraction

K × (InfluenceRadius 
A1 × InfluenceRadius  
C1)/(sq. of distance  
A1 − C1)

For design agents
IF discipline is: architecture 
K = 100; IF fashion K = 1;  
IF engineering K = 1,000

Growth of concepts
Concept (C1) − concept  
(C2) attraction

K × (InfluenceRadius 
C1 × InfluenceRadius  
C2)/(sq. of distance  
C1 − C2)

IF C1 and C2 belong to same 
discipline K = 100 ELSE 
K = 1
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social axis, such that an agent is likely to be influenced by and attracted towards 
the other agent. However, it is assumed that there needs to be a minimum gap 
threshold (Ti) between the two agents for an agent to be attractive to the other. For 
example, if Ti is assumed to be 1.2 in a given simulation, then for an agent at posi-
tion 100 units along the social axis, the other agent must at least be at the position 
120+ units to be attractive and influential for the first agent. Threshold is taken as 
a parameter to understand how perceived status gaps and thresholds may influence 
the emergent social patterns.

In addition, a coefficient of value change (Vc) is introduced such that an agent’s 
value change is the weighted average of its values associated with each of the 
three disciplines (Architecture-VcA, Fashion-VcF, Engineering-VcE ). This assump-
tion is conceptually critical, because if we assume that in a multi-disciplinary 
society agents are likely to be influenced by the design values across the other dis-
ciplines, we are implicitly assuming that they have some intrinsic recognition and 
understanding of the values of the other disciplines. How much weight the agents 
give to the design values across the other disciplines may vary. Accordingly, the 
value change coefficient for an agent is assumed to be the weighted mean of 
the value change coefficients across the three disciplines (own discipline—WO: 
 second discipline—WS: third discipline—WT). For an architecture agent WO = WA, 
for engineering agent WO = WE, and for a fashion design agent WO = WF. This 
weight distribution ratio is taken as the second the parameter, whose influence will 
be studied to determine how design values emerge in a multi-disciplinary society 
as a function of interdisciplinary and intradisciplinary sensitivity.

In summary, it is assumed that as design agents interact with each other, they 
exert influence on each other, which has the potential to change their design val-
ues. The likelihood for the change to occur is contingent on how influential the 
interacting agents are, what is the status difference between the interacting agents, 
and how much contributions these influences have on a design agent’s change in 
value. The emergent design practice including the knowledge and social dimen-
sions of the design agents and concepts are presented graphically. For simulation 
cases where the agents’ values change during the simulations, the forces of influ-
ence change over time.

3.1  Experiment Design and Simulation Scenarios

The simulation model and the parameters listed in Table 2 are used to conduct 
what-if comparisons across two different simulation scenarios, Table 3. The first 
set of simulations is conducted to assess the effects of Ti, the threshold status gap 
needed for agents to influence each other. Three different values for Ti are used, 
which are 1.2, 1.8 and 2.4. These values are used to conduct comparisons, with 
the expectation that observable effects of the threshold Ti can be found to under-
stand its role in convergence of design values. Conceptually this parameter com-
pares scenarios where design agents of similar social status influence each other’s 
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design values to those scenarios where design agents only change their design 
 values looking up to design agents who are much higher than they are in their 
social status.

The second set of simulations is conducted to assess the effects of the weight 
distribution ratio, WO:WS:WT, Table 2. Two different values for WO:WS:WT are 
used, which are 0.50:0.25:0.25 and 0.8:0.1:0.1. Conceptually, in the first case the 
agents are more receptive to design values of agents from other disciplines than in 
the second case.

At the commencement of the simulation, i.e., at t = 0, all the design agents 
and concepts in the simulation environment start with a pre-defined position on the 
two dimensional space, defined by their social and knowledge axes.

4  Simulation Results

A summary of the results from these simulation cases is presented in Fig. 1. 
For each case the results are based on an average of 50 simulations. Each graph 
in Fig. 1 presents time series plots of agents’ movements along the social axis, 
averaged over all agents from the same discipline. For example, graph A, 
presents the results from a simulation case where the parameter values are 
WO:WS:WT = 0.50:0.25:0.25 and Ti = 1.2.

In all the simulations agents from each discipline showed bimodal behaviour, 
such that a majority of agents could be aggregated together into one trend while a 
minority aggregated to show a different trend in their movement along the social 
axis. Treating all agents as a single aggregation resulted in a high standard devia-
tion in their behaviour, which was reduced when the agents were divided into two 
groupings. For each simulation case the results are split and plotted as two graphs, 
as shown in the label using the mode values, indicated either as M (majority) or 
NM (non-majority). For example, graphs A and A′ correspond to the same simula-
tion case, but A shows the trend observed with majority mode while A′ shows the 
trends observed with the non-majority of the agents from each discipline.

The graphs show a power-like trend-line that approximates the observed patterns. 
The different starting points of the regression lines is an artifact of their calculation, 
even though all the simulations have the same starting condition, and with nearly all 
agents are close to each other at the start of the simulation, i.e., at time t = 0.

Table 3  Research questions, simulation matrix and scenarios

Research questions (what if studies) Comparative simulation scenarios

Q1: If the status difference determines the 
change in design values, what is its effect  
on the emergent design practice?

With three different values of Ti

Q2: How does the design practice vary  
as a function of the relative contributions  
of social influence?

With two weight distributions i.e., WO:WS:WT 
ratio
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The consistent bimodal trend (comparing any graph X with its counterpart X′) 
in almost all the cases was an unexpected finding as it was anticipated that typi-
cally the differences across the cases would be the slope of the graphs and not nec-
essarily their order. It was expected because of the underlying force assumptions 

C- 0. 5:0.25:0.25/ 2.4/M B- 0. 5:0.25:0.25/ 1.8/M A- 0. 5:0.25:0.25/ 1.2/M 

C’- 0. 5:0.25:0.25/ 2.4/NM B’- 0. 5:0.25:0.25/ 1.8/NMA’- 0. 5:0.25:0.25/1.2/NM 

F- 0.8:0.1:0.1/ 2.4/M E- 0.8:0.1:0.1/ 1.8/MD- 0. 8:0.1:0.1/ 1.2/M 

F’- 0.8:0.1:0.1/ 2.4/NM E’- 0.8:0.1:0.1/ 1.8/NM D’- 0.8:0.1:0.1/ 1.2/NM 

Fig. 1  Average movement of agents along the social axis across different cases
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that the graphs corresponding to the fashion agents would have the greatest slope, 
followed by architecture agents and then the engineering agents. This can be 
observed in graph A. In many cases this expected trend was not observed. A plau-
sible reason for this unexpected result could be the starting positions of the agents 
at time t = 0. Each agent’s starting position was randomly chosen within limits, 
but once the starting positions were chosen for the first simulation, the positions 
were retained in all the simulations. Therefore, many of the agents may have been 
too close to each other (i.e. less than the threshold Ti) in their social dimension, 
and hence, the social influence was not experienced by them. Even though the ini-
tial positions of the agents were not considered as a simulation parameter, it may 
have been a critical factor in determining the emergent trend.

The effects of gap threshold, Ti (Question Q1, Table 3), can be compared across 
each row by comparing the trends in A, B and C, with Ti values as 1.2, 1.8 and 2.4 
respectively. At lower gap thresholds (Cases A and B), this is where agents are also 
influenced by their comparable peers, the results are more consistent with the expected 
order of social growth. When the gap thresholds are much higher (Case C), the con-
vergence is slightly higher, i.e., the slopes are relatively closer than the first two cases. 
This is likely because of the fact that only fewer agents are able to exert attraction 
forces on the other agents such that the knower effects are lesser on fashion design and 
architecture agents, bringing their social growth closer to the engineering agents. This 
explanation is partly supported by the observed trends in cases D, E and F as well, 
where the social growth order is skewed towards engineering agents compared to the 
architecture agents when the gap thresholds are increased. The results also indicate that 
in the initial starting conditions, there may have been more engineering agents at far-
ther distance to begin with, and hence, when the interdisciplinary exchange (Case F 
with ratio 0.8:0.1:0.1) were reduced it is the engineering agents that had comparatively 
higher social growth, unlike the expected trends. These patterns reiterate the conclu-
sion that the initial starting condition of the agents may be an important factor.

The effects of weight distribution ratio, WO:WS:WT (Question Q2, Table 3), can 
be analyzed by comparing graphs in row 1 (A, B, C) with corresponding graphs in 
row 3 (D, E, F). While the two sets of results for different weight distribution ratio 
show that when the interdisciplinary exchange (row 1, with ratio 0.5:0.25:0.25) 
was greater, the slopes across the three disciplines were more demarcated, and yet 
the architecture agents moved up the social axis with time. When the gap thresh-
old was increased across the two distributions it showed that weight distributions 
across disciplinary boundaries had an effect. As noted earlier, the starting condi-
tions may have affected the results.

5  Discussion and Future Work

These preliminary simulation results indicate that more research on the effect of 
initial conditions of an existing society is needed to determine its significance 
for how the collective patterns of design trends emerge. In particular, the results 
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indicate that contingent on the initial distribution of agents across their social 
positions, it is likely that multi-modal patterns will emerge in a society even if all 
agents have the same mechanisms of value change. Uniformity and collective con-
vergence through a uniform mechanism of exchange may not be supported by the 
evidence from agent-based simulations. Though the results corresponding to the 
roles of gap threshold and weight distribution ratio are not conclusive, the results 
do indicate that gap threshold and weight distribution ratio are interesting param-
eters to investigate further. For example, as reinforced in the simulation results, 
lower gap thresholds might increase peer influence along design disciplines with 
greater knower influence, while higher gap thresholds might lead to skewed trends 
towards those disciplines that have established leaders or icons that are way ahead 
of the pack.

Methodologically, these simulations use a simple model with only two param-
eters, and yet show unexpected results and trends. The results demonstrate the 
usefulness as well the challenges in using agent-based models to study collec-
tive social behaviour. While the observed bi-modal trends appear explicable after 
post-simulation rationalization, it was not predicted when all agents had simi-
lar mechanisms of value change. These results indicate that simpler relationships 
defined at local levels might have unexpected, emergent outcomes that are dif-
ficult to predict. These models can be used to identify such potential behaviour. 
These models are developed to observe aggregate trends rather than trends at 
the individual level, and though the actual values of the parameters are not criti-
cal, the choice of the values should allow noticeable behavioural change at the 
global levels. From that viewpoint, the lack of conclusive trends for the two main 
research questions raises questions such as: What if the gap threshold values 
that were chosen at 1.2, 1.8 and 2.4 were instead chosen to be 1.2, 2.4 and 4.8? 
Would that lead to more conclusive comparisons? The experience of developing 
and using these models indicate that ‘calibrating the model’ to get useful results 
is a critical step in social simulations using agent-based models, especially in 
the context of ‘what if’ studies of social phenomena that are not well-understood 
even at the levels of local interactions. The meanings of these values need to be 
explored.

The next steps in this research are to further calibrate the model and conduct 
additional simulations. The researchers plan to use initial starting condition as 
another parameter to investigate how that influences emergent trends. In future, the 
model will be extended to include other parameters once the roles of the current 
parameters are better understood.
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